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Abstract

We propose a framework where a decision-maker allocates attention across

payoff-dimensions, such as different consumption decisions, states of the world,

or time periods. Attention to a dimension is instrumentally valuable, as it

enables better decisions, but also leads to an emotional response that scales

with the amount of attention and the payoff of the dimension. The frame-

work predicts novel forms of well-known biases, including optimism, subjective

probability weighting, and dynamic inconsistency, and provides a unifying ex-

planation for these and other behavioral phenomena, such as the ostrich effect,

incomplete consumption smoothing, and default effects.
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BEAM, BRIC, Conference on Belief-Based Utility, ESA, M-BEES/M-BEPS, RUD and SABE for
their helpful comments. Bolte gratefully acknowledges financial support from the Leonard W. Ely
and Shirley R. Ely Graduate Student Fellowship.

mailto:lukas.bolte@outlook.com
mailto:collinbraymond@gmail.com


[...] each of us literally chooses, by his ways of attending to things, what sort of a
universe he shall appear to himself to inhabit.

William James (1890)

1 Introduction

Attention is an important input into economic decision-making, allowing individuals

to reason, process information, and (consciously) take action. This instrumental

role of attention has been extensively studied by psychologists (since at least James

(1890); see Desimone et al. (1995) for a review) and economists (e.g., Sims (2003);

Loewenstein and Wojtowicz (2023)).

However, work in psychology and cognitive science highlights an important second

aspect of attention, one that is typically neglected by economists: Attention generates

and regulates emotions (see Dixon et al. (2017) and Gross (1998) for reviews).1 For

instance, attending to a news article about recent stock market losses may lead to

a negative visceral reaction, while focusing on an upcoming vacation can generate

excitement.

This paper develops a tractable model that incorporates both the instrumental

and the less attended-to emotional aspects of attention. Substantively, we make three

contributions. First, we demonstrate the key implications of incorporating attention’s

emotional role in a general setting. Second, applying our model to different economic

environments, we show that the emotional aspect of attention can serve as a unifying

mechanism for a large number of well-known behavioral anomalies: Across differ-

ent environments, our model predicts that agents exhibit the “ostrich effect” and

avoid thinking about situations with low payoffs (such as poorly performing portfo-

lio, Karlsson et al. (2009), or health tests, Oster et al. (2013); Ganguly and Tasoff

(2017)), optimism and other forms of subjective probability weighting (Brunnermeier

and Parker, 2005; Sharot, 2011; Kahneman and Tversky, 1979), incomplete consump-

tion smoothing and memorable consumption (Hai et al., 2020), dynamic inconsistency

(Laibson, 1997), and default effects (Carroll et al., 2009). Although these phenomena

1That is not to say economists have completely ignored attention’s emotional role. Schelling
(1988) highlights the role of the mind as a “pleasure machine or consuming organ, the generator
of direct consumer satisfaction,” as well as an “information processing and reasoning machine.”
Schelling also implicitly suggests that these roles should be considered jointly and writes: “Awkward
it is that it seems to be the same mind from which we expect both the richest sensations and the most
austere analyses.” Our analysis of the interaction of these roles seeks to alleviate this “awkwardness.”
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are often modeled as emerging from distinct psychological considerations, our results

point out that a single cognitive mechanism may underpin many seemingly disparate

behavioral patterns. Third, we demonstrate how emotional inattention gives rise to

new forms of well-known biases. For example, our model predicts payoff-level depen-

dent dynamic inconsistency and a novel form of attentional unraveling where future

inattention generates current inattention. The model also predicts new forms of op-

timistic behavior, where agents asymmetrically avoid and engage with situations and

payoffs, leading to novel predictions about as-if probability weighting and engagement

with defaults and incentives.

We can distinguish our approach from alternative mechanisms in three ways. First,

via distinct predictions within an environment: E.g., other models of dynamic incon-

sistency (such as quasi-hyperbolic discounting and anticipatory utility) do not feature

payoff-level dependency or unraveling; similarly, alternative approaches to motivated

beliefs and probability weighting do not generate the distinct interplay between the

payoff levels and the instrumental value of states and lotteries that gives rise to

subjective probability weights in our model. Second, our model can link behaviors

across different domains—we know of no other approach that simultaneously ex-

plains anomalies in the domains of risk, time, and consumption decisions. Third,

our model posits relationships between the environment, measured attention, and

observed choice, which can match recent choice process data, such as financial log-ins

(Quispe-Torreblanca et al., 2020) or visual attention (Bhatnagar and Orquin, 2022).

We operationalize the two aspects of attention as follows. The decision-maker

(henceforth, DM—they) devotes attention across a number of dimensions, each asso-

ciated with a payoff. The attention allocation determines which actions are available

to the DM, and the action taken (which may be multi-dimensional) affects the payoff

from each dimension. This formulation captures the instrumental role of attention in

a reduced form and nests situations where attention leads to information acquisition

as well as when attention is required to execute an action (e.g., adjust an investment

portfolio), even absent any information acquisition.

The DM derives two kinds of utility. First, they directly value the payoffs from

the different dimensions as “material utility,” which is the utility the DM derives in

a model without attention’s emotional consequences. Second, and crucially, the DM

values “attention utility,” capturing the emotional role of attention. We assume that

each dimension generates attention utility that is proportional to both the dimension’s
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payoff and the amount of attention devoted to it. This may be due to feelings of

anticipation; e.g., when the DM devotes attention to an upcoming vacation, they

receive some additional utility because they think about the enjoyable activities they

will do. It may also occur due to memory; e.g., a decision-maker may recall past

vacations in order to help with planning the current one, and revisiting these memories

is pleasant. In spirit, this approach is similar, albeit broader, to models of anticipatory

utility (e.g., Loewenstein (1987); Caplin and Leahy (2001)), which assume that agents

derive flow utility as a function of beliefs about future payoffs. Our innovation is to

make this and other flow utilities from attention, such as that from thinking about

a past memory, a function of the amount of attention paid. The total weight a

dimension (and its payoff) takes in the DM’s objective is thus determined by the

attention allocation, which formalizes the sense in which individuals choose “what

sort of a universe [...] to inhabit” as mentioned by William James.

We formally introduce our framework in Section 2.1, and derive general properties

of the optimal attention allocation in Section 2.2. A key “standard” result carries

over: Increasing the instrumental value of attention for a dimension increases the

attention devoted to it. However, unlike in the standard model, a key determinant of

attention is the levels of payoffs across dimensions: Ceteris paribus, the DM devotes

more attention to dimensions with a higher payoff. The DM may thus ignore a low-

payoff dimension, even though attending to it would increase their material utility,

while they may devote excessive attention, beyond the point where it is instrumen-

tally valuable, to dimensions with higher payoffs. Moreover, because the DM can

re-allocate attention to high payoffs, attention utility implies a preference for varied

payoffs across dimensions, and since increased attention, in turn, implies higher pay-

offs, this endogenously generates “sparse” attention allocations, as in Gabaix (2014).

Section 2.3 supposes that the dimensions correspond to different consumption

decisions. In this setting, our results imply the well-documented ostrich effect: Indi-

viduals tend to be inattentive to (and possibly avoid information about) consumption

decisions with low payoffs, e.g., they ignore their investment portfolio when the mar-

ket is down (Karlsson et al., 2009). Such behavior has also been noted in medical

decision-making (e.g., Becker and Mainman (1975) and Oster et al. (2013)), in the

political domain (D’Amico and Tabellini, 2022), as well as in the lab (Avoyan and

Schotter, 2020). We show that attention’s emotional role can not only explain ostrich

behavior a la information avoidance (which is what extant models have focused on)
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but also when attention has no impact on beliefs, which existing explanations have

more difficulty rationalizing.

In Section 2.4, we let different dimensions correspond to different states of the

world. In this context, the attention-dependent weight placed on a state leads to

as-if subjective probability weighting, even though our DM understands the true

probabilities perfectly. When attention is non-instrumental, the DM devotes all their

attention to high-payoff states while ignoring the ones with low payoffs, leading to

optimism (Sharot, 2011) and a preference for positively-skewed lotteries. For instance,

our DM is willing to buy a lottery ticket (more generally, invest in a risky, potentially

lucrative asset) because they can devote attention to the state where they win the

jackpot (with evidence documented in Blume and Friend (1975); Garrett and Sobel

(1999); Forrest et al. (2002)). But attention’s emotional role can also lead to other

forms of subjective probability weighting, as in Kahneman and Tversky (1979), due to

its interaction with attention’s instrumental role, differentiating our predictions from

those of models with motivated beliefs (e.g., Brunnermeier and Parker (2005)). For

example, when the material returns to attention to a state are concave, our DM can

exhibit the widely documented “inverse-S” shaped probability weighting, where low

probabilities are over- and high ones under-weighted. Thus, we provide an alternative

foundation for probability weighting, and unlike existing approaches, our model links

the details of the economic environment to changes in the subjective weights via the

attention allocation.

In Section 3, we extend our model to dynamic settings where a dimension cor-

responds to a time period, and the DM chooses an attention allocation in multiple

periods. Our model leads to endogenous weights on time periods, i.e., preferences

over the timing of consumption. For instance, the DM may as-if discount future

periods (i.e., be present-focused) if the payoff in the present is particularly high or

attention to it is of high instrumental value. Conversely, high attention to the future

manifests as seemingly negative discounting. We also show that the emotional role

of attention naturally leads to a preference for memorable consumption: The DM

will intersperse periods where consumption is smoothed with occasional periods that

feature high levels of consumption and devote a disproportionate share of attention

to these periods.

In Section 4, we demonstrate how our model can tractably be used in a variety of

standard economic environments that combine different types of dimensions discussed
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in Sections 2 and 3. First, in Section 4.1, we show that emotional inattention leads to

dynamic inconsistency and attentional unraveling, leading to situations where both

selves are worse off relative to the commitment allocation. In Section 4.2, we show

how our DM responds in an asymmetric fashion to increases in incentives: Although

additional bonuses can increase attention to a task, increasing penalties can have the

opposite effect, implying that schemes that rely on future punishment (e.g., many

commitment devices) may be counterproductive. Last, in Section 4.3, we use our

model to study defaults, such as those commonly observed in savings plans or port-

folio adjustment problems, and, typically, changing the default action requires some

attention. Such defaults impact our DM in two ways. First, there is an asymmetric

default effect: Because of the attentional cost of attending to a low-payoff decision,

the default binds if the associated payoff is low but not when it is high. For instance,

defaults for end-of-life medical treatments will matter, whereas they will matter less

for planning a vacation. Second, because of our DM’s desire to focus on high-payoff

futures, they may choose defaults that are too optimistic. Thus, our DM suffers from

dual distortions in low-payoff situations: They rely on the default in lower-payoff

states yet tailor it to higher-payoff states.

Section 5 discusses extensions and situates our paper in the broader literature.

Section 5.1 highlights potential limitations and considers extensions of our simple

model, including relaxing conceptual and functional form assumptions, as well as

how to endogenously group dimensions; formal discussion of these occurs in Appen-

dices D and B. Section 5.2 highlights how one can distinguish our model from extant

related approaches, including rational inattention, anticipatory utility, motivated be-

liefs, recursive preferences, chosen preferences, and others. Section 6 concludes.

2 Model

We consider a decision-maker (henceforth, DM—they) who allocates attention and

chooses an action. We develop a model that captures the two fundamental features

of attention: (i) instrumental, where attention determines which actions are available

to the DM, and (ii) emotional, where attention generates attention utility. We then

characterize the optimal attention allocation and explore our model’s implications in

two canonical decision problems: a deterministic problem with multiple consumption

decisions and a problem with an uncertain state.
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2.1 Setup

The DM faces a finite number of dimensions indexed by i ∈ D.2 A dimension can

correspond to a dimension of consumption, a realization of an unknown state, a time

period, or a combination of these; keeping the model general allows us to nest various

interpretations in a wide range of applications. Each dimension i is associated with

a payoff Vi. The DM chooses an (action, attention)-pair denoted by (x, α). Action x,

chosen from a compact topological space X , determines the payoff associated with a

dimension i, i.e., Vi(x), where Vi(·) is continuous. Attention α = (αi)i∈D is a measure

on the set of dimensions, with αi denoting the attention devoted to dimension i, and

where we impose αi ≥ 0 and
∑

i αi = 1.3

Attention has two implications. First, it is instrumentally valuable. To capture

this, we let the available actions depend on the attention allocation: Given α, action

x is chosen from a set X(α) ⊆ X , where X(·) is compact- and non-empty-valued and

upper hemicontinuous, ensuring an optimum will exist. Second, attention directly

generates utility. Specifically, attention to a dimension i generates attention utility,

which we take to be proportional to the attention devoted to i and i’s payoff, i.e., it

is given by αiVi(x). Depending on the setting, attention utility can be interpreted as

anticipatory utility (Loewenstein, 1987; Caplin and Leahy, 2001) or memory utility

(Gilboa et al., 2016; Hai et al., 2020), but one that is only generated when the

DM devotes attention to future or past consumption, or as capturing how attention

enhances contemporaneous consumption (Capra et al., 2023).

The relative importance of attention utility to the usual standard payoffs, which

we call material utility, is given by a parameter λ. We view the first consequence of

attention—its instrumental role—as relatively standard, and for λ = 0, it is the only

consequence of attention. We thus refer to the case when λ = 0 as the “standard

model” and the corresponding DM as the “standard DM.”

In general, the DM’s objective is the weighted sum of material utility and attention

2We take the dimensions as given. In practice, the boundaries between dimensions may not
always be obvious. In Appendix B, we study a meta-optimization problem in which the DM chooses
how to define a dimension, and in Section 6, we provide some guidance as to how the primitives of
our model can be identified from data.

3Alternatively, one can impose an upper bound on the measure of attention. By adding a trivial
dimension with payoff 0 to D, our model becomes equivalent to one with an upper bound.
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utility, ∑
i

ωiVi(x)︸ ︷︷ ︸
material utility

+λ
∑
i

(αi + ψi)Vi(x)︸ ︷︷ ︸
attention utility

, (1)

where ωi and ψi are nonnegative parameters. Parameter ωi captures the weight

of dimension i in the DM’s material utility. When dimensions are different states,

these weights can capture the probability of each state; when dimensions are different

time periods, these weights can capture exogenous time discounting of future payoffs.

Parameter ψi is used in Section 3 to capture the amount of attention the DM’s future

“selves” devote to a period i. In static environments, it is natural to set ψi = 0.4

Our approach requires that we specify how the action set varies with attention—

X(α). In many settings, this mapping requires no additional degrees of freedom

compared to standard rational inattention models. This is because our approach al-

lows us to nest situations where action sets explicitly vary with attention, as well as,

through a suitable redefinition of variables, situations where the action set is fixed,

but the choice of action within the set depends on attention (potentially stochasti-

cally), as is the case when attention allows for information acquisition. Examples 1–3

in Appendix A.1 provide details of how to convert canonical settings of rational inat-

tention, trembling, and memory recall into our framework. Moreover, only one of our

results (Proposition 10) requires us to specify how the action set varies with attention,

while the rest only require mild technical and monotonicity conditions, and in this

one case, the mapping is quite natural.

Our model embeds a variety of other assumptions, including the functional form

of utility, the fact that individuals can solve the optimization problem of Equation (1)

without devoting attention, and assuming attention is fully controllable by the DM.

We discuss these assumptions and how to relax them in Section 5.1 and Appendix D

(which focuses on functional form assumptions).

We next study the DM’s choice of attention and action when they are jointly

chosen to maximize (1). Note, however, that in our model, fixing the attention

allocation, the utility an action generates depends on the attention allocation (as

differential attention leads to differential weighting of the payoff dimensions). Thus,

our model differs from the standard one, even when our DM cannot choose attention,

4Parameter ψi can also be used to nest the case where attention utility is independent of the
amount of directed attention αi as in anticipatory utility models like Loewenstein (1987); Caplin
and Leahy (2001): let λ go to 0, and ψi go to infinity, keeping their product constant.
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with our DM choosing actions that increase payoffs in dimensions that attract high

attention (similar to recent “bottom-up” approaches to attention, as discussed in

Section 5.1).

2.2 Optimal attention and action

We provide multiple comparative static results (Propositions 1–3) to understand how

the DM’s optimal (action, attention)-pair depends on the environment. These com-

parative statics are general—they do not depend on whether dimensions correspond

to different dimensions of consumption, realizations of an unknown state, or time

periods—and underlie the mechanisms that drive different behavioral phenomena

that we discuss in detail later. We consider the dependence on the payoff in a di-

mension, Vi, the relative weight on attention utility, λ, and parameters ωi and ψi.

We show that these results continue to hold under less restrictive functional form

assumptions in Appendix D.

To strengthen some statements, we introduce the notion of a separable environ-

ment, which captures a natural restriction on how actions relate to payoffs. In words:

An environment is separable if the DM takes separate actions for each dimension,

and whether a dimension-specific action is available depends only on the amount of

attention devoted to the dimension. Formally (as a notational convention, for any

variable that is indexed by i ∈ D, e.g., xi, we let x−i := (xi′)i′∈D\{i}):

Definition 1. The environment is separable if: (i) action x is a vector x = (xi)i∈D,

payoff Vi(xi, x−i) is independent of x−i for all i and xi, and X(α) = Πi∈DXi(αi), and

(ii) Xi is monotone, i.e., Xi(αi) ⊆ Xi(α
′
i) for all αi ≤ α′i.

Under separability, payoffs can be written more simply as a function of the at-

tention allocation directly. Specifically, maximizing (1) with respect to an (action,

attention)-pair is equivalent to maximizing
∑

i(ωi + λ(αi + ψi))V̂i(αi) with respect

to attention only, where V̂i(αi) := maxxi∈Xi(αi) Vi(xi, ·). Payoff V̂i is increasing in

attention to dimension i because of Xi’s monotonicity.

Throughout the rest of Section 2, we assume that the solution is unique. This is

purely for expositional ease—we state and prove general versions of the propositions

in Appendix C.

We begin our formal results by considering what happens when we vary the payoff

Vi. For each i, we fix some function vi (of action x) and define Vi := βivi + γi, for
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scalars βi ≥ 0 and γi. Increasing γi increases the payoff level, and increasing βi

increases the payoff difference from different actions.

An increase in the payoff level of dimension i, γi, does not affect which (action,

attention)-pair maximizes overall material utility and hence does not affect the stan-

dard DM’s (i.e., λ = 0) solution. However, the attention utility from dimension i

increases in proportion to the attention devoted to it. So when the DM puts positive

weight on attention utility (i.e., λ > 0), they devote more attention to the improved

dimension i. If the environment is separable, this increase in attention, in turn, leads

to a better action for that dimension, i.e., the value of vi increases.

An increase in the payoff difference from different actions, βi, increases the im-

portance of taking an action suitable for dimension i. It may also move the payoff

up or down (e.g., Vi increases everywhere if vi is nonnegative), inducing the DM to

change their attention just as above. In the proposition below, we offset such level

changes, and the DM always chooses an action better suited for dimension i. If the

environment is separable, this more suitable action can only be available if the DM

increases their attention. Note that this comparative static does not rely on attention

utility; it captures the standard intuition that the DM devotes attention where it is

most instrumental. Our first proposition formalizes.

Proposition 1. Consider dimension i ∈ D. Fix V−i and consider changing parame-

ters (γi, βi) to (γ′i, β
′
i). Denote the optimal (action, attention)-pairs for each parameter

set as (x, α) and (x′, α′), respectively.

• If γ′i ≥ γi and βi = β′i, then α′i ≥ αi. If, in addition, the environment is

separable, then vi(x
′) ≥ vi(x).

• If β′i ≥ βi and γ′i = γi − (β′i − βi)vi(x), then vi(x
′) ≥ vi(x). If, in addition, the

environment is separable, then α′i ≥ αi.
5

We next turn to the relative weight on attention utility λ and show three results.

Proposition 2. Consider a change of parameter λ to λ′ with λ′ > λ and let x and x′

denote the optimal actions, respectively. Then: (i)
∑

i ωiVi(x) ≥
∑

i ωiVi(x
′), (ii) the

DM’s value is convex in (γi)i∈D, and (iii) if the environment is separable, for each

i ∈ D, if the objective given λ is convex in αi, then it is also convex in αi given λ′.6

5Note that βivi(x) + γi = β′ivi(x) + γ′i, and so unless the DM changes their optimal (action,
attention)-pair, there is no level change in the payoff from dimension i.

6It is not true that increasing λ preserves joint convexity in α.
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The first part, which says material utility falls with λ, implies that the DM’s

actions are suboptimal if judged through the lens of the standard model with λ = 0 (or

if attention utility is considered a bias). The second and third parts of the proposition

imply a preference for “extreme” payoffs (i.e., payoffs are convex in the level of the

payoff of a dimension) and attention allocations (i.e., increasing λ implies that utility

is more likely to be convex in the attention to a given dimension). This preference

is due to the complementarity between a payoff increase (exogenous or endogenous

due to attention) and the weight of the associated dimension in the DM’s attention

utility: Increasing the payoff of a dimension is particularly valuable if that dimension

is heavily weighted in the DM’s attention utility; conversely, increasing the weight of

a dimension in the DM’s attention utility is particularly useful when the associated

payoff is high. In separable environments (third part), attention drives both, so the

objective becomes “more convex” relative to the standard model with λ = 0. Thus,

the DM’s attention may be naturally “sparse,” as in Gabaix (2014), not for the usual

instrumental reasons but due to the complementarity of attention’s instrumental and

emotional roles.

Lastly, we note the effects of ωi, the weight on Vi in the material utility, and ψi,

the exogenous attention, e.g., fixed future attention, devoted to dimension i. Note

that both ωi and ψi play a similar role as βi in Proposition 1 (but can capture distinct

features—e.g., ωi can capture the probability of a given dimension occurring, and ψi

the impact of exogenously determined attention). Thus, the following proposition

follows straightforwardly, and a formal proof is omitted.

Proposition 3. Consider dimension i ∈ D. Fix V−i and consider changing param-

eters (ωi, ψi) to (ω′i, ψ
′
i), with (ω′i, ψ

′
i) ≥ (ωi, ψi) element-wise. Denote the optimal

(action, attention)-pairs for each parameter set as (x, α) and (x′, α′), respectively.

Then Vi(x
′) ≥ Vi(x). If, in addition, the environment is separable, then α′i ≥ αi.

Next, we explore the implications of these general results in more specific contexts.

2.3 Attention across consumption dimensions

We now consider attention allocation when dimensions correspond to different con-

sumption decisions. Those may be ‘arranging a retirement home for a relative,’ ‘va-

cation,’ ‘health,’ ‘financial situation,’ etc. The DM’s overall material utility is the

unweighted sum of the material utilities across these dimensions, i.e., ωi = 1. In
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this context, Proposition 1 rationalizes the well-known ostrich effect: (attentional)

avoidance of low-payoff situations and, conversely, excessive attention to high-payoff

ones.7

Evidence for such behavior has been extensively documented in several domains.

In finance, retail investors’ propensity to check their portfolios, an act of paying

attention, generally comoves with the market (Karlsson et al., 2009; Sicherman et

al., 2015).8 Similar behavior has been documented in the domain of health, where

Oster et al. (2013) and Ganguly and Tasoff (2017) document the avoidance of testing

for diseases (which would require attention to negative health outcomes) with more

serious diseases inducing more avoidance.

Most existing explanations lean on information as a driving mechanism; either in

a standard way, where the instrumental value of information, or the cost of informa-

tion acquisition co-moves with the market, or in a behavioral way, due to belief-based

utility, whether from anticipation (Caplin and Leahy, 2001; Brunnermeier and Parker,

2005) or news (Kőszegi and Rabin, 2009; Karlsson et al., 2009) induces avoidance (see

Golman et al. (2017) for a survey). However, recent research suggests that the ostrich

phenomenon is not just about information but rather the direct utility derived from

attention. Using lab data that rules out informational motives, Avoyan and Schotter

(2020) show that attention covaries with expected payoffs. In the field, there is also

strong evidence for attention utility in the context of retail investors independent of

information. Building on evidence in Sicherman et al. (2015), Quispe-Torreblanca et

al. (2020) find that investors devote excessive attention to portfolios after positive

information that is already known and are willing to provide more feedback about

their portfolio (via a survey) when the portfolio is doing well. Similarly, Olafsson

and Pagel (2017) find that individuals condition their attention to financial accounts

around plausibly already known shifts in balances (e.g., individuals look more at

accounts after regular pay-days). In the health domain, individuals often avoid med-

ically recommended non-information-generating activities, such as taking medicine

(Becker and Mainman, 1975; Sherbourne et al., 1992; Lindberg and Wellisch, 2001;

DiMattero et al., 2007). For instance, DiMattero et al. (2007) find that, among indi-

7To our knowledge, the term “ostrich effect” was coined in Galai and Sade (2006), where it
describes individuals avoiding risky financial situations by pretending they do not exist.

8Individuals may also be avoiding payoffs that are low relative to some reference point (and not
absolutely). Our model can be enriched to capture such behavior by supposing that attention utility
is proportional to payoffs relative to some reference point.
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viduals experiencing serious medical conditions, individuals with worse health status

tend to adhere less to medical regimes. And in the political domain, partisans post

fewer responses to articles about their favorite candidate when they are unfavorable

(D’Amico and Tabellini, 2022).

The absence of new information from attention in all these examples renders

belief-based utility models mute, and variations in non-emotional costs and benefits

seem unlikely. Therefore, our model not only provides explanations for avoidance

behaviors that align with existing theories but also rationalizes other behaviors that

current explanations cannot explain.

2.4 Attention across states

Next, we consider attention allocation across possible realizations of an uncertain

state. The attention-dependent weights on different states lead to as-if belief dis-

tortions (characterized by Propositions 1–3) and, with them, to implications for the

DM’s attitude towards risk as well as probability weighting.

State i is weighted in the DM’s material utility by ωi = pi, where pi denotes the

objective probability of state i realizing. For simplicity, we suppose that ψi = 0,

i.e., there is no exogenous attention outside the DM’s control. The DM’s objective is

then to choose (x, α) with x ∈ X(α) to maximize
∑

i piVi(x) + λ
∑

i αiVi(x), i.e., the

expected material utility plus attention utility.9

We briefly discuss some of the general implications of Propositions 1–3 in this

environment before relating our model to more concrete behavioral phenomena. In

particular, individuals will take actions that are better suited for states with relatively

high payoffs (Proposition 1, at least in a separable environment) and for states with a

relatively high chance of occurring (Proposition 3), possibly leading to low expected

material utility (Proposition 2).10 Thus, in the context of individuals devoting atten-

tion across future contingencies, agents will know what to do with a financial windfall

9Because attention utility is independent of the probabilities, our model allows individuals to
derive attention utility from 0-probability events, and so in applications, we must be careful when
specifying the set of dimensions. In Appendix D, we discuss how our results extend when attention
utility from a state can also depend on the probability assigned to that state.

10The one nuance in applying Proposition 3 is that there is a constraint on the set of probabilities:
Increasing the probability of one state means reducing the probability of another. For the result
to hold, it must be the case that the probability shift to i comes from a “trivial” state—one where
attention has no material benefit.
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(as they have contemplated such contingency) but not which expenses to cut when

they are laid off (as this has been ignored).

Next, we highlight two implications of attention utility in situations with risk,

focusing on choices over lotteries: non-standard risk attitudes and as-if probabil-

ity weighting. Take a standard environment: A DM, equipped with an increasing

Bernoulli utility u, chooses a lottery from set X, where lottery x ∈ X leads to mon-

etary payoff of xi in state i, maximizing
∑

i piu(xi). Consider now our DM in this

environment, i.e., our DM’s action is now choosing a lottery, Vi(x) = u(xi), and they

also value attention utility in addition to the expected payoff. To isolate the emotional

role of attention, we suppose that attention has no instrumental role, i.e., X(α), the

set of available lotteries, is constant. However, all parts of the ensuing proposition

can be generalized.11

The following proposition states that attention’s emotional role both reduces risk

aversion and generates a preference for lotteries with a high payoff. In other words,

attention utility drives a wedge between risk preferences elicited via choice data (as

in the proposition) and those derived from the curvature on the Bernoulli utility u.

Proposition 4. Let DM(λ) refer to the DM with a relative weight λ on attention

utility. Then the DM(λ) is more risk-averse than DM(λ′) for any λ′ > λ. Moreover,

denoting H(x) := maxi xi, for any pair of lotteries x, x′: if H(x) > H(x′), then the

DM strictly prefers x to x′ if λ is large enough, but if H(x) = H(x′), then the DM’s

preferences over x, x′ are independent of λ.

Proposition 4 first states that attention utility leads to an additional preference

for risk. Intuitively, given a lottery x, the DM devotes attention to the high-payoff

states—the “upside” of the lottery—that consequently are relatively overweighted,

making the DM as-if optimistic. Such optimism has been documented in a wide range

of circumstances, both in the lab and the field (e.g., see Mijović-Prelec and Prelec

(2010); Sharot (2011); Mayraz (2011); Oster et al. (2013); Engelmann et al. (2019);

Orhun et al. (2021) for evidence in both monetary and non-monetary domains).

The second part of the proposition states that the DM prefers lotteries with higher

highest payoffs, and thus, when comparing two binary lotteries with the same mean

11For instance, the first part of Proposition 4 goes through allowing for an instrumental role of
attention, as long as the DM is able to devote disproportionately much attention to high-payoff
states: Let n(i, x) denote the n(i, x)-th highest payoff state given some lottery x ∈ X(α) (with ties
broken arbitrarily); the result goes through as long as for all (x, α) with x ∈ X(α), there exists α′

such that x ∈ X(α′) and
∑
i:n(i,x)≤N α

′
i ≤

∑
i:n(i,x)≤N pi for all N .
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and low payoff, the DM prefers the more positively skewed (i.e., higher standardized

third moment) one. Intuitively, because the DM devotes their attention exclusively

to the high payoff state, if the DM puts enough weight on attention utility, the DM

then prefers the lottery with the higher high payoff.12 The third part notes that

because the DM devotes attention to highest-payoff states only, attention utility does

not affect the DM’s preference over lotteries with the same highest payoff.

These results rationalize individuals who simultaneously gamble (e.g., buy low-

probability but high payoff lottery tickets) as well as buy insurance against low-

probability but high-loss outcomes, in line with extensive evidence from portfolio

choice, gambling, and the lab documenting a preference for positive skewness (for ex-

amples, see Blume and Friend (1975); Golec and Tamarkin (1998); Ebert and Wiesen

(2011); Dertwinkel-Kalt and Köster (2020)). Moreover, consistent with our model,

Jullien and Salanié (2000) and Snowberg and Wolfers (2010) suggest that the prefer-

ence for skewness is driven by subjective probabilities.

The previous proposition is reminiscent of well-known intuitions from the moti-

vated beliefs literature (e.g., Bénabou and Tirole (2002); Brunnermeier and Parker

(2005); Bracha and Brown (2012); Caplin and Leahy (2019)). However, emotional

inattention makes quite distinct predictions about behavior both for lottery choices

and in other situations involving risk. We next show how our model leads to a variety

of patterns of as-if probability weighting that motivated reasoning models cannot ac-

commodate. Moreover, in Section 4, we highlight another key distinction: Models of

motivated beliefs predict that DMs will engage with all decisions in a way that over-

weights the upside; in contrast, emotional inattention predicts that DMs will typically

engage only with the subset of dimensions that have high payoffs, and simply not en-

gage (e.g., by not taking any action, or sticking with a default) with the remainder.

Our model also directly speaks to emerging choice process data, which documents

that visual attention is directed towards more preferred options (e.g., see Bhatnagar

and Orquin (2022) for a survey, and Glöckner and Herbold (2008) for early evidence

showing that within a lottery, higher payoff options attract more visual attention).

To more clearly see how our DM acts as if they use subjective probability weights,

take the DM’s objective, divide by 1 + λ, and denote the terms in front of Vi as

12The preference for high payoffs can also be seen in another way: Consider a binary lottery x′

with mean µ and low-payoff L. Then there exists H̄ such that for all D and binary lotteries x, with
mean µ, low payoff L and H(x) > H̄, the DM prefers x to x′. (Such lottery x may not exist for
some D if D is “too coarse.”)
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qi(pi) := pi+λαi
1+λ

. Note that qi ∈ [0, 1] for all i and
∑

i qi = 1, i.e., qi describes a

probability measure. The DM, conditional on their attention allocation, behaves like

a subjective expected payoff maximizer with measure q. This as-if belief distortion

is a function of the attention allocation: As attention to state i increases, so does

the subjective probability qi assigned to that state, and qi(pi) ≥ pi if and only if

αi ≥ pi. States that attract attention in excess of (less than) their true probability

are overweighted (underweighted).

We focus on the situation where there are only two states, D = {i, i′}. When

there is no instrumental value (as in Proposition 4), the DM devotes full attention

to the higher-payoff state, which is subsequently overweighted. To generate more

general forms of probability weighting, we allow for attention to be instrumentally

valuable and consider separable environments. An example of separability in a lottery

environment would be that in order to understand the value of any given outcome in

the lottery, the DM must pay attention to it; e.g., they need to process a noisy signal

about the value of that outcome, in line with evidence in Woodford (2020); Frydman

and Jin (2022) and the broader literature on visual attention (Smith and Krajbich,

2018). Alternatively, the DM could be making realization-contingent plans that are

independent of one another (i.e., the plan contingent on winning is of no help for

planning conditional on not winning, and vice-versa).

Building on these intuitions, we will assume that the payoffs associated with each

dimension feature initially large but decreasing returns to attention. Of course, in

line with Proposition 4, our DM will devote their residual attention to the high-payoff

state. This implies the probability weighting function is compressed; that is, small

(large) probabilities are over (under)-weighted so that probability weighting takes an

inverse S shape.13 The following proposition summarizes (recall that we use V̂i to

denote payoffs when the environment is separable).

Proposition 5. Suppose D = {i, i′} and that the environment is separable. If V̂i =

V̂i′ = V̂ , V̂ is continuously differentiable, lima→0 a
∂
∂a
V̂ (a) = ∞, and ∂

∂a
V̂ (1) < ∞,

then, qi(·) = qi′(·) = q(·) and there exists some p̄ with 0 < p̄ < 1/2, such that:

q(0) = 0, q(1) = 1, q(p) > p if 0 < p < p̄ and q(p) < p if 1− p̄ < p < 1.14

13In Appendix D, we discuss how decreasing returns to attention in the attention utility term,
rather than in determining payoffs, also leads to probability weighting.

14Although this result generates two classic features of inverse S-shaped probability weighting (un-
derweighting of high probabilities and overweighting of low probabilities), the probability weighting
need not be concave and then convex (as is often assumed). Intuitively, the instrumental value of
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Figure 1 illustrates. Panel (a) shows the optimal level of attention α∗i devoted to

state i as a function of the probability pi of that state occurring; panel (b) shows the

resulting probability weighting, qi(pi). We choose V̂ (a) = − 1
a

as tractable functional

form, as it implies α∗i = (pi −
√
pi(1− pi))/(2pi − 1) which is inverse S-shaped and

hence so is qi.

αi

1

pi 10

(a)

qi

1

pi 10

(b)

Figure 1: This figure visualizes Proposition 5. We have λ = 1 and
V̂ (a) = − 1

a
. Consequently, α∗i = (pi −

√
pi(1− pi))/(2pi − 1) which

is inverse S-shaped (Panel (a)) and hence so is qi (Panel (b)).

Our approach suggests that, in conjunction with concave returns to understanding,

the emotional returns to attention can serve as a microfoundation for probability

weighting, in particular the classic finding of an inverse S-shaped weighting function

(as in Kahneman and Tversky (1979), see Wu and Gonzalez (1996) for empirical

evidence). Existing models of noisy cognition can also lead to weighting functions

(see Frydman and Jin (2023)), with the shape of the weighting function depending on

prior beliefs about probabilities. In contrast, however, our results rely on decreasing

returns to attention, which we view as empirically plausible.

Our model differs from existing approaches. Unlike cumulative prospect theory

(Tverseky and Kahneman, 1992) and rank-dependent utility (Quiggin, 1982), our

model can explain why subjective weights may vary with payoff differentials, not

just payoff ranks. Moreover, although our model can replicate patterns of optimism

arising from models of motivated beliefs, Proposition 5 shows our model can generate

patterns of probability weighting that are different.

Interestingly, there are environments where our model makes predictions distinct

from both those of motivated beliefs models and the standard parameterization of

cumulative prospect theory: If V̂i = V̂i′ = V̂ , where V̂ is strictly convex, then the DM

attention needs to be small for high values of attention, i.e., V̂ (1)− V̂ (1/2) small, to guarantee the
inverse S-shaped probability weighting everywhere.
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optimally devotes attention to the more likely state, leading them to overweight high

and underweight low probabilities, S-shaped probability weighting.

3 Attention across time

The previous section explored some implications of our model in static environments

where attention is allocated once. In this section, we consider time as a type of

dimension, and so we extend our model to intertemporal choice. We show that our

model endogenizes temporal preferences and can rationalize non-smooth consumption

paths.

The DM faces a sequence of time periods D = {1, . . . , T}, with generic period

t. For simplicity, we assume that there is no exogenous discounting, i.e., ωt = 1

for all t. We do so to highlight the effect of the attention-dependent weights on the

different periods (the dimensions) for the as-if time preferences; however, our results

can be extended easily to allow for standard exogenous temporal preferences. In each

period t, the DM chooses an (action, attention)-pair denoted by (xt, αt). The actions

jointly determine the payoffs across periods: Given x := (xt)
T
t=1, the payoff in period

t is Vt(x) (one can impose natural restrictions on how future actions impact past

payoffs). Attention is a measure on the set of time periods, i.e., αt = (αt�t′)t′∈D,

where αt�t′ denotes the attention in period t devoted to period t′ with αt�t′ ≥ 0,

and we normalize the total attention devoted (in each period) to have measure 1,

i.e.,
∑

t′ αt�t′ = 1; we also let α = (αt)t∈D. We assume that the available actions in

period t only depend on attention in period t, i.e., xt must be in Xt(αt), where Xt(·)
is compact- and non-empty-valued and upper hemicontinuous. Thus, attention at t

can improve payoffs at t′ because it allows for a different xt, which impacts Vt′(x).

Informally, in each period t, the allocation of attention determines the set of actions

that can be taken in t (but do not impact the actions available in t′), and the action

taken in period t can impact payoffs in all other periods. (An alternative way of

allowing for intertemporal dependence of payoffs on attention would be to have Xt

depend on the attention devoted to t in all other time periods but have the payoff in

period t only depend on action xt.)

In each period, the DM receives material utility and attention utility—what we

call the DM’s flow utility in period t—just as in the static model. As a natural first

step, we assume that the DM maximizes the sum of such flow utilities across periods.
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We first consider the DM’s objective in any period t holding fixed (x−t, α−t) (their

“best response function”): The DM chooses (xt, αt) with xt ∈ Xt(αt) to maximize15

T∑
t′=t

(
Vt′(xt, x−t)︸ ︷︷ ︸

material utility in t′

+λ
T∑

t′′=1

αt′�t′′Vt′′(xt, x−t)︸ ︷︷ ︸
attention utility in t′

)
. (2)

Notice that (2) can be written as (1) with ψt = 0 and ψt′ =
∑

t′′>t αt′′�t′ for t′ 6= t (and

ωt′ = 1 for all t′). Thus, from period t’s perspective, the weight on period t′ is given

by 1+λ(αt�t′+ψt′). These weights across periods t′ can be interpreted as discounting:

Fixing α, the DM behaves like a standard DM (with λ = 0) who discounts period t′

relative to period t by δt�t′ :=
1+λ(αt�t′+ψt′ )

1+λαt�t
. For instance, as attention to the present

period increases, the DM discounts future periods by more. Thus, time preferences—

whether the DM is present- or future-focused—are endogenous and depend on the

attention allocation.

In this environment, the DM is dynamically inconsistent as future selves do not

value past selves’ attention utility; we study the consequences in more detail in Sec-

tion 4.1. As a result, we need to be careful about applying Propositions 1–3. For

example, Proposition 1 suggests the DM weighs a period more if its payoff level or

the instrumental value of attention to that period increases. Indeed, magnitude-

dependent discounting is a well-known empirical regularity (e.g., Green et al. (1997)

is an early paper), although it has not been directly linked to attention. Similarly,

consistent with these intuitions, Carvalho et al. (2016) provide suggestive evidence

that savings—i.e., high future payoffs to which the individual may devote attention—

cause a preference for delayed gratification instead of the other way around. However,

this is true only when fixing (action, attention)-pairs in other periods and looking at

the DM’s best response in the current one. Actual attentional choices are the result

of an intrapersonal game (solved via backward induction) where the DM predicts

their optimal future behavior and how it depends on actions today.16 Thus, Propo-

15In this formulation, the DM values every future self’s flow utility the same, regardless of the
attention allocation. Equation (2) can be generalized by allowing the weights on period-t′ flow
utility (currently 1) to also depend on αt�t′ , e.g., flow utility in period t′ receives weight 1 + λ̃αt�t′

in time t’s objective, for some λ̃ ≥ 0. All results in this section go through with this more general
formulation.

16Formally, let Ht := (xt′ , αt′)
t−1
t′=1 denote the (action, attention)-pairs the DM chose up to (and

excluding) period t. Let Γt(Ht) denote the set of credible (x, α) when the DM has chosen Ht so far
and now chooses (xt, αt), where credibility requires that the DM in each future period chooses their
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sitions 1–3 may cease to hold due to coordination motives in the DM’s problem.

Example 4 in Appendix A.2 shows that increasing a future payoff can lead to less

attention to that period; Example 5 shows that varying λ can affect the material

utility non-monotonically.

Next, we study the implications of attention utility in a simple but classic environ-

ment: a consumption-saving problem. A DM receives a unit of income in every period

that they irreversibly allocate for consumption across current and future periods. In

each period, they value consumption according to some strictly concave function V .

Formally, in period t, the DM chooses xt = (xt�t′)
T
t′=1, where xt�t′ denotes the amount

of period-t income allocated for consumption in period t′, and
∑T

t′=1 xt�t′ ≤ 1 for all

t, and consumption in period t is valued by V (
∑t

t′=1 xt′�t) (note that while we allow

the DM to allocate consumption to past periods, the flow material utility in any given

period t depends only on consumption assigned from periods prior to t, i.e., periods

t′ such that t′ ≤ t). The concavity of V implies that in this standard problem, the

DM would smooth consumption by consuming all income in the period they receive

it.

Consider now our DM in this environment. Letting x = (xt)
T
t=1, our formulation

captures the consumption allocation of income as action x with period-t (consump-

tion) payoff Vt(x) = V (
∑t

t′=1 xt′�t). We need to make an assumption about the

instrumental value of attention, i.e., how the feasible consumption allocations xt de-

pend on the attention allocation αt. In the following proposition, we suppose that for

all t, we have Xt(αt) = {xt : xt�t′ ≤ αt�t′∀t′}, i.e., the DM needs to allocate attention

to a period in order to allocate their income to that period.

To simplify the statement of the proposition, we make some technical assumptions:

First, assume that V is satiated at exactly integer K, i.e., V (K) = V (K ′) for all

K ′ ≥ K and V (K) > V (K ′) for all K ′ < K, and suppose K is a divisor of T .

Second, assume that −V ′′(K)
V ′(0)

> 2
K

, where V ′ and V ′′ correspond to the first and

second derivative of V . This assumption guarantees that the benefit of allocating

attention to a state that currently has no attention is not too high.17

corresponding (action, attention)-pair optimally. For t < T , Γt(Ht) is recursively defined as argmax
of (2) over (x, α), with (x, α) ∈ Γt+1(Ht, (xt, αt)) and x ∈ X(α); and ΓT (HT ) as the argmax of (2)
over (x, α), with (x, α) ∈ {HT , (xT , αT )} and x ∈ X(α), where X(α) := (Xt(αt))

T
t=1.

17If K is not a divisor of T , then when λ > λ̄ (where λ̄ is defined in the ensuing proposition),

the last payoff in period T would be less than those in other high-payoff periods. If −V
′′(K)
V ′(0) ≤

2
K

then the DM’s consumption in high-consumption periods only approaches K as λ → ∞ but never
reaches it.
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Proposition 6. There exist
¯
λ > 0 and λ̄ < ∞, such that the DM optimally chooses

αt = xt, and (i) if λ <
¯
λ, in each period t, αt�t = 1, (ii) if λ > λ̄, then there are

exactly T
K

periods t with
∑t

t′=1 αt′�t = K.

When the weight on attention utility λ is small, the DM behaves as in the standard

model, where they maximize their material utility by smoothing consumption. Since

attention goes hand in hand with the action (allocation of income), the DM devotes

all their attention to the present period. Although all attention is devoted to the

present, we still have δt�t′ = 1 for all t, t′ with t′ ≥ t, and so there is no discounting

of future payoffs. The reason is that while attention utility in period t depends on Vt

only, attention utility in period t′ similarly depends on Vt′ only, and so both payoffs

receive the same weight in the DM’s objective.18

For λ large, the DM allocates all income and attention to a subset of periods

with high consumption. These high consumption periods are then exploited for at-

tention utility. In fact, the DM never devotes attention to any period outside of the

high-consumption periods set. Our model thus rationalizes non-smooth consumption

paths, e.g., weddings, vacations, and other lavish celebrations.19 Because in our en-

vironment, the DM has no intrinsic preference over the timing of consumption (it is

only due to attention utility), they are indifferent between the actual timing of the

high consumption periods. If we allow individuals to have a slight intrinsic preference

for earlier consumption (i.e., standard discounting), the DM then desires a particular

structure to attention: There are contiguous blocks of K periods, where all periods

in the block pay attention to the last period. Thus, the individual has cycles of low

consumption, punctuated by a single high-consumption period.

Such consumption paths can be similarly rationalized through memory utility

(Gilboa et al., 2016; Hai et al., 2020) or anticipatory utility (Loewenstein, 1987).

The key innovation in our model is that the enjoyment of fond memories requires

attention to be experienced. More generally, our DM controls the flow of anticipatory

and memory utility via their attention allocation instead of taking it as given.

18When attention additionally determines the weights on the flow utilities, for instance, if the
weight on period t′ in period-t’s objective is 1 + λ̃αt�t′ instead of 1 (see footnote 15), then δt�t′ =
1/(1 + λ̃) and so the DM falls in the class of quasi-hyperbolic discounters (Laibson, 1997).

19Hai et al. (2020) notes that the average expenditure on weddings is about USD 20,000 and that
the average annual household income of a newly married couple is USD 55,000. Another example of
such consumption paths is workout and diet plans featuring “cheat meals”: The individual’s material
utility is low, other than on cheat days to which they devote much attention.
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Our DM’s ability to manage their anticipatory or memory utility via attention

also differentiates our model from others with endogenous, and in particular payoff-

dependent, discounting. Loewenstein (1987) shows how anticipatory utility can drive

a DM to negatively discount a high future payoff since it creates high anticipatory

utility until it is realized. Noor and Takeoka (2022) develop a model where the

discount rate is chosen optimally subject to a cost and show that this also leads to

payoff-dependent discounting. However, these models fail to generate one of our key

predictions, which is that the observed discount factor varies not just with levels of

payoffs but also with the marginal return of attention across time.

4 Applications

Our previous results show how emotional inattention can impact behavior in three

classic domains of decision-making: multi-dimensional consumption, risk, and time.

Of course, many important economic environments involve at least two of these simul-

taneously. Here, we demonstrate how our model can help us understand important

behaviors in economic applications that involve multiple kinds of domains: task com-

pletion and dynamic inconsistency, incentivizing an agent to exert effort, and default

effects. Incorporating multiple domains means we must be more explicit about what

dimensions are salient to the DM. For example, in a domain with both dimensions

of consumption and risk, does the DM focus on the cross-product of consumption

decisions and states of the world, or instead, would they focus on consumption deci-

sions and aggregate across states (or vice versa)? Thus, this section not only shows

that emotional inattention is portable to more complex settings and, under reason-

able assumptions, delivers testable predictions but also highlights the need to think

carefully about the ways in which a DM can direct attention.

4.1 Dynamic inconsistency and attentional scarcity

The DM may be dynamically inconsistent because future selves do not value past

selves’ attention utility. This feature is also present in existing models, e.g., those

with anticipatory utility such as Loewenstein (1987); however, in our model, dynamic

inconsistency only arises for intermediate payoff levels. Furthermore, and distinct

from existing models, actions across periods to increase the payoff in a particular
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period are complements; this is because attending to a particular period leads to

higher attention utility if the DM attends to that period already during another

period. As a result, provided the DM only has limited attention available (i.e., there

is “attention scarcity”), the equilibrium outcome may involve full inaction and is

Pareto-dominated by the commitment solution.

To formalize these issues, we consider a simple two-period model, where, in each

period, the DM devotes attention to either a non-trivial or a trivial consumption

decision, with payoffs in period 2, denoted by c (for consumption) and o (for out-

side option), respectively (thus, our primitive dimensions correspond to time-dated

consumption decisions). To further simplify the model (and notation), we assume

that we can write the non-trivial consumption payoff as a function of the attention

allocated to it. To highlight this, we write the payoff as V̂c(α1�c, α2�c), where αt�c

denotes the attention in period t = 1, 2 devoted to the non-trivial decision (although

this is slightly abusing notation, as our environment does not satisfy separability as

in Definition 1).

The DM’s objective in period 1 is

V̂c(α1�c, α2�c) + V̂o︸ ︷︷ ︸
material utility in 2

+λ (α1�cV̂c(α1�c, α2�c) + α1�oV̂o)︸ ︷︷ ︸
attention utility in 1

+ λ (α2�cV̂c(α1�c, α2�c) + α2�oV̂o)︸ ︷︷ ︸
attention utility in 2

, (3)

where V̂o denotes the fixed payoff from the trivial consumption decision, and αt�c is

the attention in period t = 1, 2 devoted to it, with αt�c + αt�o = 1 for t = 1, 2.

A commitment solution solves (3). When the DM cannot commit to a future

attention allocation, period-2 self, for a given α1 = (α1�c, α1�o), maximizes the sum

of period-2 material utility and attention utility (the first and third terms in (3)).

A no-commitment solution (in pure strategies) is thus a pair α∗1, α
∗
2(·), where α∗2(α1)

solves the DM’s period-2 problem given α1, and α∗1 solves (3) if period-2 attention is

given by α∗2(·).
The driver of the dynamic inconsistency is that in period 2, the DM ignores the

impact of their actions on period-1 attention utility. Thus, the DM in period 2 devotes

too little attention to the non-trivial payoff relative to what period-1 self desires.

Proposition 7. Suppose V̂c is continuous. Then: (i) both a commitment solution
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and a no-commitment solution exist, and (ii) fixing any α1 the optimal α2�c chosen

by period-2 self is less than that period-1 self would choose.

Unlike other models, like Loewenstein (1987), with dynamic inconsistency due

to anticipatory utility, our model only generates time inconsistency for intermediate

payoff levels. When the non-trivial payoff is sufficiently high, both selves will devote

all their attention to it, and when it is sufficiently low, both selves fully ignore it.

We turn to a second distinct feature of our model: unraveling. Period-2 self

devoting less attention relative to what period-1 self desires decreases the attention

utility period-1 self gets from attending to the non-trivial payoff. As a result, period-

1 self may, in turn, also decrease attention to the non-trivial payoff, making it less

pleasant to attend to for period-2 self, and so forth. For example, consider a student

needing to study over the course of two days for an unpleasant exam—there is not

enough time in a single day to prepare. If the student could commit to studying

on both days, they would, as the performance after studying would be high enough

to offset the unpleasantness of thinking about the class. But if the student cannot

commit, then on day 2, the marginal returns from studying are not enough to outweigh

the emotional costs. Thus, on the first day, anticipating that studying will not happen

in the future, the benefit of studying is no longer worth the emotional cost, which is

higher as the anticipated grade is lower.

The ensuing proposition shows a consequence of this complementarity of attention:

If the DM does not have enough attention available in any given period, they may

fail to devote attention to the non-trivial payoff in either period, leading to a Pareto-

dominated outcome.

Proposition 8. Suppose (a) λ > 0, (b) V̂c(0, 0) < V̂o < V̂c(1, 0), (c) V̂c is con-

tinuously differentiable with positive derivatives bounded away from zero everywhere,

(d) and period-2 attention is not too instrumental. Then there exist λ large enough

and (ᾱ1�c, ᾱ2�c) ∈ [0, 1]2 such that if the DM’s attention allocations must satisfy

(α1�c, α2�c) ≤ (ᾱ1�c, ᾱ2�c): (i) The unique no-commitment outcome is (α1�c, α2�c) =

(0, 0), (ii) with commitment, the DM devotes attention to the non-trivial consumption

decision in both periods, and (iii) in both periods, the DM strictly prefers commitment

solutions to the no-commitment solution.

Moreover, if there are no constraints on the DM’s attention allocation, then the

unique commitment and no-commitment outcome is (α1�c, α2�c) = (1, 1).
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Three key intuitions drive the result. First, emotional inattention implies that

for large λ, the optimization problem can be convex for each period’s self. Second,

because of dynamic inconsistency, we can construct situations where period-2 self

wants to avoid paying attention to the non-trivial task because the marginal material

gain is not worth the emotional cost. Third, if period-2 self committed to paying

attention to the non-trivial task, the payoff would be high enough to justify period-1

self paying attention. But, knowing that period-2 self, in fact, will not pay attention,

the convexity of the payoff function for period-1 self implies that it becomes optimal

to devote no attention either—we get attentional unraveling. This is despite the

fact that there are no direct material complementarities for attention across periods,

making it a novel prediction of our model.

4.2 Perverse effects of negative incentive schemes

We next consider how emotionally inattentive DMs respond to changes in incentive

schemes. We focus on a simple environment where there are binary outcomes (“suc-

cess” and “failure”), and effort requires attention. Standard ways to induce effort are

to increase the reward for success or the penalty for failure, and for a standard DM

(with λ = 0), they are similarly effective. However, when λ > 0, their consequences

may differ starkly: A penalty decreases the expected payoff and can thus lead to lower

attention and, perversely, lower effort.

Formally, there are multiple consumption decisions—leisure (l) and work (w)—and

the work dimension has multiple states associated with it. By allocating attention,

the DM affects the relative likelihoods of the two states. In contrast to previous

sections, we suppose that the DM, when devoting attention to one state, also devotes

attention to the other state in proportion to their respective likelihoods. In other

words, they bracket the two possible states together and devote attention to the

expected payoff.20 We thus consider a separable environment, and use V̂i to highlight

this, with only consumption decisions D = {w, l}, i.e., the DM chooses αw, αl, with

20Our qualitative conclusions only depend on the fact that the DM must devote at least some
attention to the failure state whenever they devote attention to the success state (and vice versa)—
not that those attention levels must be proportional to the respective likelihoods. Furthermore, in
many situations, the agent would want to force themselves to “bracket” the two states together so
that attention to one state naturally leads to attention to the other. In Appendix B, we formalize
how the DM might optimally bracket different dimensions as one or separate.
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αw + αl = 1, to maximize

V̂w(αw) + V̂l(αl)︸ ︷︷ ︸
material utility

+λ (αwV̂w(αw) + αlV̂l(αl))︸ ︷︷ ︸
attention utility

,

where V̂w(αw) = p(αw)vH + (1 − p(αw))vL; vH , vL, with vH > vL, are the payoffs

in the success and failure state, respectively, and p(αw) is the probability of success

given attention αw, with p increasing and continuously differentiable. Probability p

captures that individual effort (i.e., attention) changes the distribution of observed

payoffs. The difference in payoffs, vH − vL, may be due to nature or could be a result

of a contracting problem, where effort is not directly contractible.

We now consider what happens when the incentive scheme (vH , vL) changes, e.g.,

we consider different contracts the DM faces, ignoring the participation constraint.

There are two possible ways in which the stakes in the contract could be increased:

Either the payoff for a success could increase (i.e., vH increases—the “carrot”), or

the payoff for a failure could decrease (i.e., vL falls—the “stick”). For a standard

DM with λ = 0, the only thing that matters for their attention allocation is vH − vL.

In contrast, when λ > 0, changes in the incentive scheme may have very different

consequences.

Proposition 9. Consider the environment as introduced prior to this proposition and

suppose the optimal αw is unique. Then: (i) Increasing vH , vL by the same amount

increases αw, (ii) increasing vH increases αw, and (iii) decreasing vL decreases αw if

p(αw) + αw
∂

∂αw
p(αw) < 1 everywhere and λ is large enough.

The first part of the proposition points out (in line with previous results) that the

DM prefers to pay attention to work where all payoffs are high. Note that neither

a standard DM (with λ = 0) nor a DM who overweights the high payoff, say, the

DM in Brunnermeier and Parker (2005), would adjust their attention.21 Thus, once

again, our model’s prediction differs starkly from those of other related ones.

The second and third parts note an asymmetric response to incentives and suggest

that the strengthening of incentives can have perverse effects under some conditions.

Standard theory would predict that increasing the impact of passing an exam or

21It is also the case that if the probability of success is simply shifted up by a constant for any
given level of attention, the standard DM with λ = 0 will not change their behavior, while those
with λ > 0 would increase their attention. Thus, emotionally inattentive DMs like to exert more
effort on tasks with a higher likelihood of success, fixing the return to effort.
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failing (or payment conditional on a success versus a failure in a contract or the

earnings of being employed versus unemployed) should all lead to increased effort. In

contrast, an emotionally inattentive DM increases their effort in response to a carrot

(increasing vH); a stick (decreasing vL), however, may decrease the expected payoff

and can thus lead to lower attention. Our model thus predicts that the lower payoffs

conditional on the negative outcome happening (while fixing payoffs conditional on

the good outcome) can lead to lower effort and worse performance. This occurs when

attention is not very effective in increasing p ( ∂
∂αw

p(αw) is low), and success is far

from guaranteed (p(αw) is also low).

4.3 Default effects

We now explore how emotional inattention induces asymmetric default effects and

ex-ante default choice. The environment features multiple time periods, consumption

decisions, and risk. We show that defaults bind only in low-payoff states but that our

DM, perversely, may set the default to maximize the payoff in high-payoff states.

Formally, there are two periods—period 1 and period 2. The setup in period 2

is that of Section 2.3 with two consumption decisions, D = {c, o}. One of them,

c, involves the choice of a default action. Its payoff is parameterized by some state

s ∈ S, capturing, e.g., an income shock, where S is finite, which is revealed to the DM

at the beginning of the second period (thus, our primitive dimensions correspond to

state-contingent, time-dated consumption decisions). The DM’s default action x1 is

chosen in the first period. The other consumption decision, o (for attentional outside

option), is trivial, i.e., its payoff Vo is constant. We model this attentional outside

option as a consumption decision in period 2; however, it can also correspond to

a past or period-1 payoff. For simplicity, we assume there are no (other) period-1

payoffs to which the DM devotes attention.

If the DM does not devote sufficient attention to the non-trivial dimension, then

the default binds; we capture this by assuming that X2(α2) = {x̃2} if α2�c < η

(i.e., the available period-2 actions are a constant singleton). The payoff from the

non-trivial dimension is given by

Vc(x1, x2|s) = vc(x1, x2|s) + βu(x1|s),

where β ≥ 0. The first component, vc(x1, x2|s) captures x1 serving as a default:
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vc(x1, x2|s) depends on x1 if and only if x2 = x̃2, i.e., “the default binds.” The second

component reflects the part of period-2 payoffs that is impacted permanently by the

choice of the default in period 1 (e.g., due to an irreversible investment), where we

assume that for some state s, u(·|s) is not constant. Parameter β reflects how much

of an impact the default has on payoffs, conditional on a different action being taken

in period 2: If β = 0, then x1 is a pure default—it only affects payoffs if it is not

altered. In the limit as β gets larger, only the action in period 1 impacts payoffs,

regardless of what occurs in period 2.

Thus, in period 2, the DM chooses (x2, α2) with x2 ∈ X2(α2) to maximize

Vc(x1,x2|s)︷ ︸︸ ︷
vc(x1, x2|s) + βu(x1|s) +Vo︸ ︷︷ ︸

material utility

+λ(α2�c

Vc(x1,x2|s)︷ ︸︸ ︷
(vc(x1, x2|s) + βu(x1|s)) +α2�oVo︸ ︷︷ ︸

attention utility

). (4)

We let U2(x1, s) denote the maximized value of (4) and the corresponding action and

attention by x2(x1, s) and α2(x1, s), respectively, where we suppose that the solution

is unique to simplify notation.

In period 1, when the default is chosen, the DM also values their current atten-

tion utility. We assume that they can devote attention across the realizations of

future consumption decisions and that this attention is non-instrumental, i.e., the

set of available default actions X1(α1) is independent of attention α1. Let α1�(c,s)

denote the attention in period 1 devoted to the nontrivial consumption decision in

state s, and α1�o that to the trivial decision. The DM’s period-1 attention utility is∑
s∈S α1�(c,s)Vc(x1, x2(x1, s)|s) + α1�oVo.

In period 1, the DM’s objective is the sum of period-1 attention utility and the

expected period-2 utility (recall that attention utility in either period has weight

λ). The following proposition summarizes and characterizes the states in which the

default binds when the weight on attention utility is large.

Proposition 10. Let S̄(x1) := {s : α2�c(x1, s) < η}, i.e., it is the set of states in

which the default binds. Suppose X1(α1) is independent of α1 and finite, and λ is large

enough. Then: (i) For any x1, S̄(x1) = {s : max(x2,α2),x2∈X2(α2) Vc(x1, x2|s) < Vo},
(ii) if β = 0, then the optimal default action x1 satisfies

x1 = arg max
x′1∈X1

∑
s∈

¯
S(x1)

psVc(x
′
1, x2(x′1, s)|s),
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and, (iii) if β > 0, then the optimal default action x1 satisfies

x1 = arg max
x′1∈X1

∑
s∈S\

¯
S(x1)

p̃su(x′1|s),

as long as S̄(x1) 6= S, where (p̃s)s∈S\
¯
S(x1) are some weights.

The first part of the proposition describes a default effect: The DM fails to readjust

their action in some states of the world, even though it is instrumentally costless.

For example, if individuals have default savings plans, it suggests that individuals

will tend to adjust more often with positive income shocks rather than negative ones.

The key distinction relative to other models with costly adjustment is that the default

binds asymmetrically—it only matters for states with low payoffs.

The second and third parts of the proposition imply that depending on the cir-

cumstances, the initially chosen default may look very different. In the second part,

the default is “pure,” i.e., it has no impact on payoffs unless it is not adjusted—e.g., a

consumption plan does not impact future utility unless it is not changed. In this case,

the DM chooses the default in order to maximize the expected payoff conditional on

when the default binds: for example, consumers anticipating future inattention in

periods of low payoffs plan their default consumption level to be low as insurance.

The third part considers the case where the choice of default directly impacts

payoffs in period 2, even when a different action is subsequently taken; for example,

current portfolio allocations both generate current returns and serve as a default for

future investing. A DM with a high λ now wants to choose a default action that

generates high attention utility in both periods, and so picks a default suitable for

the weighted average of the states the DM devotes attention to, which are precisely

those states when the default does not bind. In other words, this DM plans for the

best but fails to re-optimize when the worst happens.

5 Discussion

5.1 Limits and extensions

Top-down vs bottom-up attention. A key tenet of our model is that the indi-

vidual voluntarily directs attention, a premise often referred to as “top-down” atten-

tion. Recent economic models of attribute-based choice, e.g., Bordalo et al. (2013);
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Kőszegi and Szeidl (2013); Bushong et al. (2021), have shown how involuntary at-

tentional shifts (“bottom-up” attention) can play an important role in behavior such

as violations of independence and non-exponential discounting. That said, evidence

suggests that at least some attention is directed (e.g., Corbetta and Shulman (2002);

Buschman and Miller (2007); Bronchetti et al. (2023)). Our model is applicable in

any situation where at least some of the attention is optimally chosen, even if the rest

is involuntarily allocated (which we capture via parameter ψi).

Functional form of attention utility. Our approach abstracts away from many

details. In reality, the generation of attention utility is likely a variegated process:

Attention to past consumption may generate memory utility, attention to future con-

sumption may generate anticipatory utility, and attention to contemporaneous con-

sumption may enhance consumption utility. Extending our setting, one may partially

account for this by analyzing a model with different λ parameters for each cognitive

process.

Furthermore, attention utility likely does not have the simple functional form we

assume. In Appendix D, we consider more general functional forms and alternative

specifications and assess the robustness of Propositions 1–3; we show that material

payoffs and attention being complements is the key driving force behind many of our

results.

How focused is attention? It may also seem that many decisions require only

short bursts of attention (e.g., one’s portfolio choice in the context of financial decision-

making mentioned in the introduction and further discussed in Section 2.3 may be

completed within minutes). This might imply that emotional inattention has a

second-order impact.22 While plausible in some situations, we believe attention’s

instrumental role to be generally less trivial. Even if deciding which action to take

may be done with short contemplation (and little attention), executing the chosen

action may take a nontrivial amount of time. For example, an individual with health

concerns may decide instantaneously in a doctor’s office to monitor their symptoms;

however, actual monitoring will require attention allocated over a long period of time.

22We note that one needs to be careful about interpreting the fact that many individuals may
seem to take these decisions using a short period of as equivalent to the fact that these decisions,
if made to maximize material utility, would take only a short amount of time. In fact, our model
predicts that we would see (too) short decision times for unpleasant tasks.
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Levels vs changes. We model attention utility as a function of attention to a

dimension and the payoff in that dimension. Of course, comparison to reference points

can be an important driver of utility (as in Kahneman and Tversky (1979); Kőszegi

and Rabin (2006), among others). Our model can straightforwardly be extended so

that attention utility and/or material utility are based on payoffs relative to some

reference points. In fact, our model already captures the case where both material

utility and attention utility are evaluated relative to the same fixed referent: replace

payoff Vi(x) with Vi(x)−ri everywhere and for all dimensions i, where r = (ri)i is the

referent. That said, models that allow attention utility to only depend on concerns

about changes in (expected) payoffs would fail to match some of the predictions of

our model, such as optimism and non-smooth consumption.

What requires attention? For tractability, we assume that the DM (as-if) un-

derstands and solves the optimization problem, i.e., Equation (1), without devoting

attention. Although such an approach is tractable, it does beg the question of how the

implications of the model might be changed if the act of optimization itself generates

attention utility (this issue of recursion, see Lipman (1991) for a discussion, arises in

many other models of optimal attention). One could construct a dynamic model of

gradual learning about the problem, and we believe our qualitative results would also

hold in this more complicated setting.

What is a dimension? A primitive of our model is a set of dimensions. Although

in many environments, the set of dimensions may be obvious, in others, it may not

be clear. This can provide the modeler with degrees of freedom in specifying the

environment. However, we can eliminate this by extending the model so that the

decision-maker optimally partitions their environment into dimensions in a way that

will maximize their utility, given the optimal attentional allocation across dimensions.

Appendix B demonstrates how to do this.

5.2 Relation to existing models

This section compares our model to related approaches. Further discussion of how our

model relates to alternative explanations of (as-if) belief distortions, such as optimism

and probability weighting (Section 2.4), or temporal discounting (Section 3), can be

found in the respective sections.
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Cognitive costs and rational inattention. The burgeoning area of rational inat-

tention (Maćkowiak et al., 2023; Sims, 2003; Caplin and Dean, 2015) also studies the

allocation of attention. In these models, individuals allocate attention to gain infor-

mation, subject to a cost (often mental) that depends on the amount of information

gained (i.e., the total amount of attention used). We believe our approach is comple-

mentary to the rational inattention literature for two reasons. First, while rational

inattention models primarily (albeit with some exceptions, such as (Gabaix, 2014))

focus on how much attention should be used for a particular problem, we focus on

how to allocate a fixed amount of attention across problems. Second, our definition

of Vi is general enough so that it can capture both the utility benefits as well as the

utility costs of acquiring information in dimensions i, allowing us to capture ratio-

nal inattention concerns (Example 1 in Section A.1 shows how a canonical rational

inattention setup is nested in our approach).

Although, like our model, rational inattention can explain why individuals may

deliberately choose not to fully acquire information, emotional inattention makes

several novel predictions. Our model predicts that the “cost of attention” falls for

a particular dimension if the relative payoff of that dimension increases. Thus, in

contrast to the predictions of rational inattention, emotionally inattentive individu-

als will pay less attention to low-payoff situations, even if the returns to additional

information may be high (e.g., as when individuals avoid inexpensive tests for Hunt-

ington’s disease (Oster et al., 2013)), and may devote large amounts of attention to

positive situations even when there are no obvious material benefits (as in Quispe-

Torreblanca et al. (2020)).23 In the domain of risk, rational inattention fails to predict

violations of expected utility, while in dynamic settings, rationally inattentive agents

will be dynamically consistent, unlike emotionally inattentive agents.

Anticipatory utility and motivated beliefs. Our model can be seen as extend-

ing models of anticipatory utility, where agents gain flow utility from their beliefs

about future outcomes (see Loewenstein (1987); Loewenstein and Elster (1992) for

early contributions, and recent efforts of Caplin and Leahy (2001); Brunnermeier and

Parker (2005); Bénabou and Tirole (2002)). In contrast to that literature, we sup-

pose that the flow of anticipatory utility is mediated via the allocation of attention.

23Chambers et al. (2020) model rational inattention where the cost of attention can exhibit wealth
effects; however, there, the costs depend on absolute, not relative, payoffs.
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Anticipatory utility models can explain some of the same behavioral anomalies as our

model—e.g., they predict violations of independence in choices over risk, dynamic

inconsistency in temporal choice, incomplete consumption smoothing, and ostrich

effects.

However, emotional inattention makes distinct predictions in many situations.

For example, because anticipatory models are driven by future expectations, they

fail to predict individuals avoiding situations when there is no information to be

gained (or alternatively, paying attention when there is nothing to be learned), unlike

our model, where agents may avoid taking actions related to low-payoff situations

(such as preventative health actions) even in the absence of learning. In addition,

because in anticipatory models, utility occurs due to beliefs regardless of attentional

allocation, they fail to predict that changing the set of situations that the agent could

pay attention to will alter their information acquisition (as in Falk and Zimmermann

(2016), where the availability of a distractor affects informational preferences).

Our model of emotional inattention also makes distinct predictions from a well-

known subclass of anticipatory utility models—those that feature motivated beliefs.

Within an environment featuring uncertainty, our model predicts that attention’s

instrumental role may lead to increased focus on, and subsequent overweighting of,

low-payoff states, leading to a wide variety of as-if probability weighting patterns,

including pessimism and inverse S shapes (Proposition 5), that are outside of the

predictions of motivated beliefs models. Furthermore, an emotionally inattentive

DM may completely avoid an environment with uncertainty. For instance, in Sec-

tion 4.2, we discussed a DM whose choice of effort stochastically determines a payoff.

A motivated-beliefs agent would always exert more effort than a standard DM (one

with λ = 0). Our DM, instead, reduces their effort if payoffs are shifted down (first

part of Proposition 9), and this recusal may look like pessimistic attitudes toward the

expected payoff.

Recursive preferences. A distinct approach to capturing non-standard attitudes

towards both risk and time is the recursive preferences introduced by Kreps and Por-

teus (1978), including the widely used functional form of Epstein and Zin (1989).

These models posit that individuals do not fully reduce compound risk and, like

our model, have been developed to explain both behavior with respect to risk and

consumption smoothing (by decoupling the coefficient of risk aversion and the in-
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tertemporal elasticity of substitution).

Although these models can accommodate non-expected utility risk attitudes as

well as information aversion, they differ from emotional inattention in three key di-

mensions already mentioned with respect to other models. First, they fail to explain

“action aversion” in the absence of information, and second, most of the models’ im-

plied attitudes towards risk, with binary outcomes, reduce to rank-dependent utility,

i.e., only rank, rather than payoff differentials, matter for implied subjective proba-

bility distortions. Third, in a world without risk, recursive models predict that in-

dividuals should fully consumption smooth—i.e., these models cannot easily account

for memorable consumption events.

Chosen preferences and beliefs. There is a small literature modeling agents

who can optimally choose or adapt their future preferences (Bernheim et al. (2021);

Elster (1983); related are models of motivated beliefs and optimal discounting, both of

which we discuss elsewhere). Similarly, our DM can endogenously adjust the weights

applied to various dimensions of the environment, changing their utility function via

the choice of α, which Bernheim et al. (2021) call choosing a “world view.”

However, our model has a distinctive feature relative to, e.g., Bernheim et al.

(2021): The choice of the utility function (i.e., the weights on different dimensions)

impacts the set of available actions, and so there is a tradeoff. As a result, our model

makes predictions such as present-focus when attention to the present is particularly

useful, inverse-S-shaped probability weighting if attention has decreasing (instrumen-

tal) returns, and, more generally, utility functions that emphasize dimensions where

attention’s instrumental value is high.

Other models of attention. We know of two other papers in economics that

simultaneously model the instrumental and emotional roles of attention in a way

similar to ours. The DM in Tasoff and Madarasz (2009) faces a decision problem

with multiple consumption dimensions and receives anticipatory utility from each as

a function of its payoff and the attention devoted to it. Attention increases if the

(expected) payoff of a dimension changes, either because the DM takes an action or

acquires information. Although some of their results overlap with ours, we develop a

33



general model that is also applicable in the domains of risk and time.24 Within the

domain of contemporaneous consumption, unlike them, we allow attention to affect

payoffs even if there is no instrumental consequence. Thus, our DM, unlike theirs,

avoids low-payoff dimensions, such as their investment portfolio, even if there is no

information to acquire and action to take, as in Quispe-Torreblanca et al. (2020).

In Karlsson et al. (2009), the DM gains utility not from anticipatory emotions but

rather as gain-loss utility from changes in expected future payoffs. Attention has two

effects: It increases the impact of gain-loss utility, and it speeds up a reference point

adjustment. Under some conditions, the DM pays additional attention to a situation

only when there is positive initial news. Our model is similar in that attention also

increases the impact (or weight) of a payoff. However, in our model, attention’s

instrumental value may also come from actions requiring attention. Moreover, we

explore the implications of attention in novel environments (such as risk and time)

as well as in applications, developing entirely new predictions.

Distinctly, Golman and Loewenstein (2018); Golman et al. (2021) and Golman et

al. (2022) develop a different approach to attention. Like in our model, individuals

weigh expected outcomes by attention when computing current utility. Unlike in

our model, the attention weights are not determined by a joint optimization over

material payoffs and attentional utility. Rather, attention is an exogenous function

of the material value of information in that dimension, the salience of a dimension,

and the expected reduction of entropy of beliefs given information. Thus, they aim

to explain a different set of facts about attention using very different foundations for

its allocation.

6 Conclusion

This paper has presented a model where attention has two fundamental features: It

helps the DM make better decisions, and it determines how payoffs are aggregated.

We study our model in a variety of economic environments, focusing on two key

lessons. First, the DM may ignore low-payoff situations, states, and time periods,

even if doing so is instrumentally harmful, to decrease its weight in their objective

24Their main application is on how information provision can increase consumption, even when
the DM learns their marginal payoff is less than what they expected—this intuition can be expressed
in our framework as we show in Example 6 in Appendix A.3.
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function (and conversely devote excessive attention to high-payoff ones). Second,

due to attention reweighting the objective function, our model can lead to a vari-

ety of behavioral phenomena where the exact form reflects the underlying economic

environments.

We recognize, of course, that there are situations where individuals seem to freely

allocate attention to negative emotion-generating activities with low instrumental

value. For instance, the premise of our model seems at odds with pessimists who

constantly focus on the negative aspects of any situation and overweight those or the

fact that many people doom-scroll and look at social media feeds that induce negative

feelings. However, we believe that the large body of empirical findings discussed

throughout the paper provides strong evidence that, in many situations, individuals

exhibit a desire to focus on the positive aspects of their environment.25

This paper has focused on what kinds of novel behavior the emotional inattention

framework can generate rather than the extent to which the model parameters can

be identified from the data. However, in many situations, the novel primitives of our

model, the set of dimensions and λ, can be recovered from the data. The details

would vary by the environment, but here, we provide the intuition for a situation

where the dimensions are states. The choices over lotteries allow us then to identify

the degree of overweighting of the high-payoff state(s) and thus λ. In particular,

recall that the subjective probability weight assigned to the high outcome in a binary

lottery is equal to pi+λ
1+λ

, where pi is the true probability. Once the probability weight

on the high outcome is known (which can be derived from standard methods, see

Gonzalez and Wu (1999)), recovering λ is simple algebra.
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Online Supplementary Material

A Additional examples

A.1 Examples of canonical problems

Examples 1–3 show how canonical settings with (cognitively) costly information ac-

quisition (Maćkowiak et al., 2018; Sims, 2003), attention reducing “trembles” (Fuden-

berg et al., 2015), and recall of memories (Kahana, 2012) are nested in our framework.

“Actions” and “payoffs” shall refer to those in the now explicitly modeled dimension

i corresponding to the respective canonical choice problem.

Example 1 (Costly information acquisition). We first present a standard rational

inattention model, then construct an equivalent problem using our notation, and last

show they lead to the same behavior and payoffs.

We begin by setting up a standard rational inattention problem. The environment

consists of:

• A finite set of possible action A, with cardinality N and typical element j;

• a finite set of states Θ, with typical element θ;

• state contingent utilities for each action u(j, θ);

• a prior ρ0 ∈ ∆(Θ);

• information structures M , where each information structure is a finite distri-

bution over posterior beliefs with mean ρ0, i.e., M ⊆ ∆(∆(Θ)) and for all

µ ∈ M , Bayes’ plausibility holds,
∑

ρ1∈support(µ) µ(ρ1)ρ1 = ρ0, where ρ1 denotes

a posterior; and

• a function c that associates with each µ ∈ M a cost c(µ, ρ0), where c(µ, ρ0) is

increasing in the Blackwell ordering of µ.

The DM’s problem is as follows. For a given posterior ρ1, the DM chooses an ac-

tion j∗(ρ1) to maximize Eθ∼ρ1 [u(j∗(ρ1), θ)]. Thus, they choose an information struc-

ture µ ∈M to maximize

U(µ) =
∑

ρ1∈support(µ)

µ(ρ1)Eθ∼ρ1 [u(j∗(ρ1), θ)]− c(µ, ρ0).
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We show how to reformulate this rational inattention model into our setting. The

setup is that of Section 2.3 with two consumption decisions, D = {c, o} and no emo-

tional consequence of attention, i.e., λ = 0. One of the consumption dimensions,

o, is an attentional outside option that is trivial, i.e., its payoff Vo is constant. The

other, c, will capture the rational inattention problem from above. In particular, the

rational inattention problem provides a micro-foundation for the functional form of

Vc, otherwise modeled in reduced form.

We first describe the three primitives for emotional inattention: A set of actions,

a function mapping attention to subsets of actions, and a payoff function. An action

x in the emotional inattention model is now a pair (µ, j), where µ is an information

structure and j a function prescribing an action (in the rational inattention problem)

to each posterior obtained under µ. Thus, implicitly (as it is not formally part of the

model), the DM also faces an uncertain state θ, can acquire an information structure

µ, and takes some action. We thus interpret x as a “contingent plan.” Without loss,

we assume the DM takes optimal actions j∗, and so j may be suppressed.

We now turn to how the set of available actions depends on attention. Consider

the function f : R → [0, 1], which is a strictly monotone function mapping each cost

level c(µ, ρ) in the rational inattention set-up to an attention level; available actions

as a function of attention is then defined as X(αc, αo) := {(µ, j∗)|f(c(µ, ρ0) ≤ αc)}.
In other words, for any given level of attention, an attention level induces a possible

set of information acquisition strategies, plus the associated ex-post optimal actions.

Last, define the payoff function for any given action as Vc(µ, j
∗) := U(µ); that

is, the emotionally inattentive payoff from an action is the expected payoff from an

experiment that generates that set of posteriors, and the associated optimal actions

for each posterior, less the cost of that experiment. Note that the choice of f does not

impact the solution to the optimization of Vc.

The two problems yield the same behavior. Indeed, the set of solutions is essen-

tially the same mutatis mutandis: Consider µ ∈ M maximizing U(µ). Since µ is

optimal, for all (x, α) with x ∈ X(α) and x = (µ′, j∗), we must have Vc(x) ≤ U(µ);

furthermore, αc = f(c(µ, ρ0)) and x = (µ, j∗) achieves U(µ). Thus, the values of the

rational and emotional inattention problems are the same.

Introducing attention utility, i.e., λ > 0, allows the modeler then to assess the

effects of attention’s emotional role in a standard rational inattention model.

Example 2 (Trembling). Dimension i is the reduced form of a canonical choice

2



problem with trembles (see, e.g., Fudenberg et al. (2015) for an example).

The DM chooses an action j from set A = {1, . . . , N}. The vector v ∈ RN where vj

is the payoff of action j ∈ A is known. The DM’s choice is random—they “tremble”—

and attention αi to dimension i is useful because it allows the DM to reduce trembling.

Specifically, suppose that X(α) =
∏

iXi(αi), where xi ∈ Xi(αi) denotes the “recuction

in trembling.” The DM can then choose B ∈ F(xi) ⊆ ∆(A), where F is compact-

valued, increasing and non-empty. The DM’s payoff from dimension i given x =

(xi, x−i) ∈ X(α) is

Vi(xi) := EB[vj].

For an example of a particular F , consider

F(xi) = {B ∈ ∆(A) : κ(H(U)−H(B)) ≤ xi},

for some κ ≥ 0, where H(B) denotes the entropy of belief B for the definition) and

U the uniform distribution on A; i.e., if the DM devotes no attention, they will make

each choice with equal probability.26

Example 3 (Memory recall). The goal is to model memory recall, as discussed in

Kahana (2012). We interpret the memory recall model as a special case of ratio-

nal inattention (Example 1), where information acquisition is now recalling signal

realizations from memory.

Thus, consider the setup from Example 1 and construct a particular set of in-

formation structures M . The DM is endowed with a memory base, modeled as an

infinite set of independent signals {s1, s2, . . . } each independently drawn from some

G(θ), where G is finite. Let µd correspond to the information structure resulting from

d draws. The information structures corresponding to a standard memory recall model

are then given by M = {µd : d = 0, . . . ,∞}.

A.2 Examples for Section 3

Example 4. This example shows that increasing a future payoff can lead to less

attention to the associated period. There are three time periods, T = 3. The payoffs

26When the distribution of states is discrete, H(B) = −
∑
k pk log(pk), where pk is the prob-

ability of state k; and for distribution that has a probability density function f , entropy is
−
∫
v
f(v) log(f(v))dv.
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in periods 1 and 2 are constant and equal and denoted by V̄ . The payoff in period 3

is either high V̄3 or low
¯
V3, depending on the action the DM chooses in periods 1 and

2. In each period t ∈ {1, 2}, the available actions are

Xt(αt) =

{¯x} if < ηt

{
¯
x, x∗} if αt�3 ≥ ηt,

in particular, taking the action x∗ requires attention devoted to period 3. The payoff

in period 3 is high if the DM takes action x∗ in at least one period; otherwise, it is

low. We also force α2�3 ≥
¯
α2�3, with 0 <

¯
α2�3 < η2 (formally, this is modeled by

assuming any payoff is negative infinity if the DM’s attention differs).

Suppose the payoff in period 3 is lower than that in periods 1 and 2, i.e.,
¯
V3 <

V̄3 < V̄ . We construct an example where the DM in period 1 prefers action x∗ to be

taken in period 2 over it being taken in period 1 over it never being taken. Initially,

however, the DM in period 2 would not take x∗, including if the DM in period 1 did

not take it, and so the DM takes x∗ (and devotes attention to period 3) in period 1.

As the payoff in period 3 increases, this changes: the DM in period 2 now takes x∗,

and so the DM in period 1 does not, and hence reduces their attention to period 3.

Let us derive the conditions.

In period 3, the DM devotes all their attention to V̄ (from either of the other

periods) and takes a degenerate action. If the DM took action x∗ in period 1, then in

period 2, they choose α2�2 = 1−
¯
α2�3 and α2�3 =

¯
α2�3. Otherwise, they take action

x∗ (and α2�2 = 1− η2 and α2�3 = η2) over
¯
x (and α2�2 = 1−

¯
α2�3 and α2�3 =

¯
α2�3)

if

(1 + λ(1− η2))V̄ + (1 + λη2)V̄3 ≥ (1 + λ(1−
¯
α2�3))V̄ + (1 + λ

¯
α2�3)

¯
V3. (5)

In period 1, the DM prefers to take action
¯
x (and α1�1 = 1) and the DM in period 2

taking action x∗ (with aforementioned attention) over taking action x∗ (and α1�1 =

1−η1 and α1�3 = η1) and the DM in period 2 taking
¯
x (with aforementioned attention)

if

(1+λ(1+(1−η2))V̄+(1+λη2)V̄3 ≥ (1+λ((1−η1)+1)V̄+(1+λη1)V̄3 ⇐⇒ η1 ≥ η2. (6)

Finally, also in period 1, the DM prefers taking action x∗ (with aforementioned atten-

tion and action in period 2) over always taking action
¯
x (with no attention to period

4



3 in period 1 and minimal in period 2) if

(1 + λ(1− η1))V̄ + (1 + λ(η1 +
¯
α2�3))V̄3 ≥ (1 + λ)V̄ + (1 + λ

¯
α2�3)

¯
V3. (7)

Since
¯
V3 < V̄3 < V̄ , there exists λ > 0 such that (7) holds with equality. For such

λ, since
¯
α2�3 > 0, there exists η2 < η1 (i.e., (6) holds) so that (5) does not hold.

Furthermore, λ can be slightly decreased so that (7) now holds strictly and (5) still

does not hold. Thus, for these parameter values, the unique solution is for the DM to

take action x∗ in period 1 and hence devote η1 > 0 to period 3.

Now, increase both
¯
V3 and V̄3 by γ. If γ is large enough (but still V̄3 + γ < V̄ ),

then (5) holds (and (6) and (7) remain to hold), so that the unique no-commitment

solution is for the DM to take action x∗ in period 2 only, i.e., the DM reduces their

attention to period 3 in period 1.

A non-monotonicity of the attention devoted to period 3 as a function of β3 (as

in the parameterization used for the comparative statics) can be constructed similarly

but is omitted.

Example 5. Return to the setting of Example 4; the construction of an example

showing λ can affect the material utility non-monotonically proceeds almost identi-

cally.

Since
¯
V3 < V̄3 < V̄ , there exists λ > 0 such that (7) holds with equality. For such

λ, since
¯
α2�3 > 0, there exists η2 < η1 (i.e., (6) holds) so that (5) does not hold.

Furthermore, λ can be slightly decreased so that (7) now holds strictly and (5) still

does not hold. Thus, for these parameter values, the unique solution is for the DM to

take action x∗ in period 1 and hence devote η1 > 0 to period 3.

Now decrease λ to something still strictly positive, but so that (5) holds. As before,

the DM now takes action x∗ in period 2. Of course, material utility (the unweighted

consumption payoff) is unchanged. However, all comparisons in our constructions

are strict; thus, assuming that taking action x∗ in period 2 only leads to a payoff of

V̄3 − ε in period 3 does not change the construction for ε > 0 small enough. In this

case, decreasing λ leads to a decrease in material utility.
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A.3 Example of bad news about the quality of a product

increasing consumption

Example 6. This example builds on the ideas of Tasoff and Madarasz (2009).

Consider the setup of Section 2.3 and suppose D = {c,m}. Consumption decision

c corresponds to the DM purchasing a quantity of a consumption good at a unit price of

1. Their valuation of quantity k is θu(k), where u is strictly concave and continuously

differentiable, and θ ∈ {θL, θH} with P (θ = θH) = p ∈ (0, 1). The DM has wealth 1

available, and whatever amount they do not consume, 1− k, leads to payoff 1− k as

part of dimension m (the “money” problem).

We assume that limk→0
∂
∂k
u(k) = ∞ and ∂

∂k
u(1) = 0 so that the DM always

chooses an interior k.

We consider two cases: The DM devotes full attention αc = 1, and the DM devotes

no attention αc = 0. These cases may be the result of the DM optimally choosing their

attention allocation or due to advertising by the producer of the consumption good.

The DM learns the value of θ if αc = 1 (formally, such attention allows for some

action x that corresponds to learning the value of θ). For αc = 0, the DM decides k

before knowing θ and receives the expected payoff from consumption.

Suppose the DM learns the value of θ, i.e., αc = 1. Then, they choose c to satisfy

(1 + λ)θu′(c) = 1.

If they do not learn θ, i.e., αc = 0, the DM chooses c to satisfy

E[θ]u′(c) = 1 + λ.

(The values of Vc(x), Vm(x) are the expected payoffs with the just derived optimal level

of consumption.)

Thus, if 1 + λ > E[θ]
θL

, the DM consumes more of the good if they receive the

information and learn it is of low value compared to when they do not receive any

information.
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B Closing the model: optimal bracketing

Our model requires carefully specifying the environment: A key component is parti-

tioning the environment into a set of dimensions. (In this way, our model is similar

to prospect theory, which also requires an additional theory—that of the reference

point.) In many real economic environments, natural partitions exist. However, what

defines a dimension may be less obvious in other situations.

If natural partitions do not exist, one way of “closing” the model is to assume the

DM themselves partitions the environment into dimensions and does so optimally.

The DM may be able to do such partitioning by associating one dimension with

another, either through some purely cognitive process or with the help of physical

cues they install.

Formally, consider the setup of Section 2.1 where, in addition to choosing (x, α)

with x ∈ X(α), the DM also chooses a bracketing B ∈ P(D). Let B(i) be defined

by i ∈ B(i) ∈ B. Whenever the DM devotes attention to i, all dimensions i′ ∈ B(i)

“come to mind.” As multiple dimensions come to mind, the DM’s attention is diluted

uniformly among them. Thus, given (x, α) and B, the DM utility is∑
i

Vi(x)︸ ︷︷ ︸
material utility

+λ
∑
i

αiV̄B(i)(x)︸ ︷︷ ︸
attention utility

, (8)

where V̄D(x) :=
∑
i∈D Vi(x)

|D| for D ⊆ D. For the ensuing proposition also let ᾱD(x) :=∑
i∈D αi
|D| for D ⊆ D.

Note that the model in Section 2 is recovered when B consists of singleton sets and

that a DM who uses one bracket, i.e., B is a singleton, is equivalent to the standard

DM with λ = 0.

Proposition 11 states a necessary condition for bracketing to be optimal: The

average amount of attention devoted to a bracket must be monotone in the average

payoff of a bracket. If this were not the case, the DM could combine a low-attention

but high-payoff bracket with a high-attention but low-payoff bracket, increasing their

attention utility as the high payoffs take a larger weight. (This condition is not

sufficient as, e.g., B = {D} trivially satisfies it but need not be optimal.)

Proposition 11. Consider any (x, α) and B optimal given (x, α). Then V̄D(x) >

V̄D′(x) implies ᾱD ≥ ᾱD′ for all D,D′ ∈ B.

7



C Proofs of the results in the main body

C.1 Proposition 1

We first state a version of Proposition 1 that does not rely on the uniqueness of the

solutions, which we subsequently prove.

Proposition 1*. Consider dimension i ∈ D. Fix V−i, and let Γ(γi, βi) denote the

set of optimal (action, attention)-pairs.

• If λ > 0: If γ
′
i > γi then min(x,α)∈Γ(γ

′
i ,βi)

αi ≥ max(x,α)∈Γ(γi,βi) αi. If, in addition,

the environment is separable, then min(x,α)∈Γ(γ′i,βi)
vi(x) ≥ max(x,α)∈Γ(γi,βi) vi(x).

• If for βi and γi, max(x,α)∈Γ(γi,βi) Vi(x) = min(x,α)∈Γ(γi,βi) Vi(x), then for any β
′
i >

βi and γ
′
i = γi−(β

′
i−βi)vi(x), where (x, α) ∈ Γ(γi, βi), we have min(x,α)∈Γ(γ′i,β

′
i)
vi(x) ≥

max(x,α)∈Γ(γi,βi) vi(x). If, in addition, the environment is separable, then min(x,α)∈Γ(β′i,γ
′
i)
αi ≥

max(x,α)∈Γ(βi,γi) αi.

It is immediate that Proposition 1* implies Proposition 1.

Proof of Proposition 1*. Take any γ′i, γi with γ′i > γi and βi. Let (x, α) and (x′, α′)

denote a solution given γi and γ′i, respectively. Optimality of (x, α) and (x′, α′) implies∑
j∈D\{i}

(ωj + λ(αj + ψj))Vj(x)

︸ ︷︷ ︸
:=κ0

+(ωi + λ(αi + ψi))(βivi(x) + γi)

≥
∑

j∈D\{i}

(ωj + λ(α′j + ψj))Vj(x
′)

︸ ︷︷ ︸
:=κ1

+(ωi + λ(α′i + ψi))(βivi(x
′) + γi) and

∑
j∈D\{i}

(ωj + λ(α′j + ψj))Vj(x
′)

︸ ︷︷ ︸
=κ1

+(ωi + λ(α′i + ψi))(βivi(x
′) + γ′i)

≥
∑

j∈D\{i}

(ωj + λ(αj + ψj))Vj(x)

︸ ︷︷ ︸
=κ0

+(ωi + λ(αi + ψi))(βivi(x) + γ′i).
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Combining the above gives

− ((ωi + λ(αi + ψi))(βivi(x) + γ′i)− (ωi + λ(α′i + ψi))(βivi(x
′) + γ′i))

≥κ0 − κ1

≥− ((ωi + λ(αi + ψi))(βivi(x) + γi)− (ωi + λ(α′i + ψi))(βivi(x
′) + γi)) .

The outer inequality implies

−λ(αi − α′i)(γ′i − γi) ≥ 0,

and thus, it must be that α′i ≥ αi as λ > 0.

If the environment is separable, then vi is increasing in the amount of attention

αi devoted to dimension i, and the result follows.

Take any βi, β
′
i ≥ 0 with β′i > βi and γi and suppose that max(x,α)∈Γ(γi,βi) Vi(x) =

min(x,α)∈Γ(γi,βi) Vi(x). Let γ
′
i = γi − (β

′
i − βi)vi(x), where (x, α) ∈ Γ(γi, βi). Let (x, α)

and (x′, α′) denote a solution given (βi, γi) and (β′i, γ
′
i), respectively. Optimality of

(x, α) and (x′, α′) implies∑
j∈D\{i}

(ωj + λ(αj + ψj))Vj(x)

︸ ︷︷ ︸
:=κ2

+(ωi + λ(αi + ψi))(βivi(x) + γi)

≥
∑

j∈D\{i}

(ωj + λ(α′j + ψj))Vj(x
′)

︸ ︷︷ ︸
:=κ3

+(ωi + λ(α′i + ψi))(βivi(x
′) + γi) and

∑
j∈D\{i}

(ωj + λ(α′j + ψj))Vj(x
′)

︸ ︷︷ ︸
=κ3

+(ωi + λ(α′i + ψi))(β
′
ivi(x

′) + γ′i)

≥
∑

j∈D\{i}

(ωj + λ(αj + ψj))Vj(x)

︸ ︷︷ ︸
=κ2

+(ωi + λ(αi + ψi))(β
′
ivi(x) + γ′i).
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Combining the above and substituting for γ′i gives

− ((ωi + λ(αi + ψi))(βivi(x) + γi)− (ωi + λ(α′i + ψi))(β
′
ivi(x

′) + γi − (β′i − βi)vi(x)))

≥κ2 − κ3

≥− ((ωi + λ(αi + ψi))(βivi(x) + γi)− (ωi + λ(α′i + ψi))(βivi(x
′) + γi)) .

The outer inequality implies

−(ωi + λ(α′i + ψi))(vi(x)− vi(x′))(β′i − βi) ≥ 0,

and thus, it must be that vi(x
′) ≥ vi(x).

If the environment is separable, then vi is increasing in the amount of attention

αi devoted to dimension i, and the result follows.

C.2 Proof of Proposition 2

Proof of Proposition 2. Take any λ′, λ with λ′ > λ. Let (x, α) and (x′, α′) denote a

solution given λ and λ′, respectively. Optimality of (x, α) and (x′, α′) implies∑
i

ωiVi(x) + λ
∑
i

(αi + ψi)Vi(x) ≥
∑
i

ωiVi(x
′) + λ

∑
i

(α′i + ψi)Vi(x
′), and∑

i

ωiVi(x
′) + λ′

∑
i

(α′i + ψi)Vi(x
′) ≥

∑
i

ωiVi(x) + λ′
∑
i

(αi + ψi)Vi(x).

Combining the above gives

−λ′
(∑

i

(αi + ψi)Vi(x)−
∑
i

(α′i + ψi)Vi(x
′)

)
≥
∑
i

ωiVi(x)−
∑
i

ωiVi(x
′)

≥ −λ

(∑
i

(αi + ψi)Vi(x)−
∑
i

(α′i + ψi)Vi(x
′)

)
.

To reach a contradiction, suppose the expression in the middle is strictly negative.

Then, the expression on the right must also be strictly negative; but then it is strictly

larger than the left one as λ′ > λ—a contradiction. Thus, the first claim follows.

Now consider two sets of payoff levels, (γi)i∈D and (γ′i)i∈D, and scalar χ ∈ [0, 1].
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Then

max
α,x∈X(α)

∑
i

(ωi + λ(αi + ψi))(βivi(x) + χγi + (1− χ)γ′i)

= max
α,x∈X(α)

(
χ
∑
i

(ωi + λ(αi + ψi))(βivi(x) + γi) + (1− χ)
∑
i

(ωi + λ(αi + ψi))(βivi(x) + γ′i)

)
≤χ max

α,x∈X(α)

∑
i

(ωi + λ(αi + ψi))(βivi(x) + γi) + (1− χ) max
α,x∈X(α)

∑
i

(ωi + λ(αi + ψi))(βivi(x) + γ′i),

where the inequality is due to optimality, and so the second claim follows.

Now, suppose the environment is separable; consider dimension i ∈ D and sup-

pose the objective given λ is convex in αi. Since (1) is additively separable across

dimensions, it suffices to only show that if ωiV̂i(αi) +λ(αi +ψi)V̂i(αi) is convex in αi,

it remains so as λ is increased to λ′. Furthermore, since ωiV̂i(αi) + λ(αi + ψi)V̂i(αi)

is a linear combination of V̂i(αi) and αiV̂i(αi) with the relative weight on the latter

increasing in λ, it suffices to show that if V̂i(αi) in convex in αi, so is αiV̂i(αi). To this

end, assume V̂i(αi) in convex in αi and take any χ ∈ [0, 1] and αi, α
′
i with αi < α′i.

Then

χαiV̂i(αi) + (1− χ)α′iV̂i(α
′
i)

=αi(χV̂i(αi) + (1− χ)V̂i(α
′
i)) + (α′i − αi)(1− χ)V̂i(α

′
i)

≥αiV̂i(χαi + (1− χ)α′i) + (α′i − αi)(1− χ)V̂i(α
′
i)

=χαiV̂i(χαi + (1− χ)α′i) + (1− χ)(αiV̂i(χαi + (1− χ)α′i) + (α′i − αi)V̂i(α′i))

≥χαiV̂i(χαi + (1− χ)α′i) + (1− χ)(αiV̂i(χαi + (1− χ)α′i) + (α′i − αi)V̂i(χαi + (1− χ)α′i))

=χαiV̂i(χαi + (1− χ)α′i) + (1− χ)α′iV̂i(χαi + (1− χ)α′i),

where the first inequality follows since V̂i(αi) in convex in αi, and the second as V̂i is

increasing; hence, the third claim follows.

C.3 Proof of Proposition 4

Proof of Proposition 4. Take any lottery x, and suppose that the DM(λ) prefers x

to δy for some payoff y, i.e.,
∑

i piu(xi) + λu(H(x)) ≥ (1 + λ)u(y), where the DM

optimally devotes full attention to the states with the highest payoff H(x). Since

u(H(x)) ≥
∑

i piu(xi), by definition of H(x), we must have u(H(x)) ≥ u(y) for the
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inequality to hold. Thus, the inequality continues to hold when λ is increased to λ′,

and so DM(λ′) also prefers x to δy.

For the second and third claims, take any x, x′. The DM’s strictly prefers x to x′

if and only if

1

1 + λ

∑
i

piu(xi) +
λ

1 + λ
u(H(x)) >

1

1 + λ

∑
i

piu(x′i) +
λ

1 + λ
u(H(x′)).

For the second claim, note that if H(x) > H(x′), the above is satisfied for large enough

λ since the left and right sides converge to u(H(x)) and u(H(x′)), respectively; for

the third claim, note that if H(x) = H(x′), then the above is logically equivalent

to
∑

i piu(xi) >
∑

i piu(x′i), and so the DM’s preferences are indeed independent of

λ.

C.4 Proof of Proposition 5

Proof of Proposition 5. Suppose that V̂i = V̂i′ = V̂ , with V̂ continuously differen-

tiable, lima→0 a
∂
∂a
V̂ (a) = ∞, and ∂

∂a
V̂ (1) < ∞. qi(·) = qi′(·) since the labels, i, i′,

can be exchanged in the DM’s objective. For pi = 0, since V̂ is increasing and not

constant (by the limit condition), the DM optimally devotes full attention to state i′.

Hence, q(0) = 0.

We next show that for pi > 0 small enough, the optimal αi exceeds pi, which

implies q(pi) > pi. Consider the derivative of the DM’s overall payoff,

(pi + λαi)
∂
∂a
V̂ (αi)− ((1− pi) + λ(1− αi)) ∂

∂a
V̂ (1− αi)

1 + λ
+
λ(V̂ (αi)− V̂ (1− αi))

1 + λ
. (9)

Note that for any pi > 0, the DM chooses αi > 0 since ∂
∂a
V̂ (0) =∞ and ∂

∂a
Ṽ (1) <∞

and so (9) is strictly positive at αi = 0. Now, consider the limit of (9) as αi →
0 for some fixed p̃i with 0 < p̃i < 1/2; the limit is infinite since we assumed

lima→0 a
∂
∂a
V̂ (a) = ∞, implying that (p̃i + λαi)

∂
∂a
V̂ (αi) → ∞, and all other terms

in (9) are finite. Thus, there exists a ᾱi with 0 < ᾱi ≤ p̃i such that for all αi ≤ ᾱi,

(9) evaluated at αi (given p̃i) is strictly positive. Let p̄ = ᾱi. Since (9) is decreasing

in pi (provided pi < 1/2) for all αi ∈ [0, 1/2] and p̄ ≤ p̃i, we have for all pi with

0 < pi < p̄, (9) is strictly positive for all αi ∈ [0, p̄]. This implies that the optimal

αi is strictly greater than pi. Since qi(pi) = pi+λαi
1+λ

, it follows that q(pi) > pi for such
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pi. (If qi(pi) is a set, then the comparison applies to each element of qi(pi).) The

remaining comparisons follow from the symmetry of qi(·).

C.5 Proof of Proposition 6

Proof of Proposition 6. For both λ small and λ large, we consider the solution to an

auxiliary problem and under commitment. We then show that the solution to this

problem is also the solution to the original problem without commitment.

In particular, in the auxiliary problem, we will suppose that income allocations

from all (both past and future) affect any given period’s payoff, i.e., consumption in

period t is valued by V (
∑T

t′=1 xt′�t).

This auxiliary problem simplifies our analysis: Given commitment, it is easy to

see that the DM optimally chooses xt�t′ = αt�t′ for all t, t′; thus, at time 1, DM then

maximizes
T∑
t=1

(1 + λα�t)V (α�t), (10)

where α�t :=
∑T

t′=1 αt′�t is the amount of attention devoted to period t, such that∑T
t=1 α�t = T .

Consider the case of small λ. Let
¯
λ := maxα�t∈[0,T ]

V ′′(α�t)
2V ′(α�t)+α�tV (α�t)

; we next

show that for λ <
¯
λ, (10) is strictly concave. Note that if (1 +λα�t)V (α�t) is strictly

concave for α ∈ [0, T ], then (10) is strictly concave in (α�t)
T
t=1.27

Thus, consider

∂2

∂α2
�t

(1 + λα�t)V (α�t) = 2V ′(α�t) + (1 + λα�t)V
′′(α�t)

= V ′′(α�t) + λ(2V ′(α�t) + α�tV
′′(α�t)).

If 2V ′(α�t) + α�tV
′′(α�t) < 0, then, since V is strictly concave, the above is also

strictly negative for any λ; otherwise, the above is bounded by V ′′(α�t)+
¯
λ(2V ′(α�t)+

α�tV
′′(α�t)), which is strictly negative by definition of

¯
λ. Thus, the above is strictly

negative for all α�t.

It is easy to check that α�t = 1 for all t satisfies the Karush-Kuhn-Tucker con-

27I.e., if for all χ ∈ (0, 1) and α�t, α
′
�t, χ(1 + λα�t)V (α�t) + (1 − χ)(1 + λα′�t)V (α′�t) < (1 +

λ(χα�t+(1−χ)α′�t))V (χα�t+(1−χ)α′�t), then for all χ ∈ (0, 1) and (α�t)
T
t=1, (α

′
�t)

T
t=1, χ

∑T
t=1(1+

λα�t)V (α�t)+(1−χ)
∑T
t=1(1+λα′�t)V (α′�t) <

∑T
t=1(1+λ(χα�t+(1−χ)α′�t))V (χα�t+(1−χ)α′�t).
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ditions of the associated Lagrangian. Since the unconstrained problem is strictly

concave for λ <
¯
λ, αt = 1 for all t is the unique global solution.

Moreover, note that the only way of achieving this optimum in the original prob-

lem, where only past and current income allocations increase the consumption payoff,

is by choosing αt�t = xt�t = 1 for all t. What remains to be shown is that the DM

can implement these attention allocations and actions without commitment. Con-

sider the DM at time t and suppose αt′�t′ = xt′�t′ = 1 for all t′ < t. Note that this

DM’s objective is maximized with αt′�t′ = xt′�t′ = 1 for all t′ ≥ t. Since this holds

for all t, αt�t = xt�t = 1 for all t is indeed credible and hence chosen by the DM.

Next, consider the case of large λ. We return to the auxiliary problem with

commitment, where the DM chooses α�t for t = 1, . . . , T such that
∑T

t=1 α�t = T

to maximize (10). We show that i) the solutions to (10) converge to those attention

allocations where α�t = K for T
K

periods (and zero otherwise), ii) for λ large enough,

each of such attention allocations is a strict local maximum, and iii) the neighborhood

in which each allocation is strictly optimal increases in λ. Together, these three facts

then imply that α�t = K for T
K

periods (and zero otherwise) are the global solutions

for λ large enough.

For i), note that, in the limit, each attention allocation that maximizes
∑T

t=1 α�tV (α�t)

is strictly better than any that does not. In particular, it must be that each optimal

allocation converges to one that achieves the maximum amount of attention utility,

TV (K). Of those attention allocations, the elements in the claimed set of solutions in

the limit uniquely maximize the DM objective for any λ, as they maximize material

utility, and the result follows.

For ii), we again consider the Karush-Kuhn-Tucker conditions of the associated

Lagrangian. Because we are considering T periods, we have T associated first-order

Karush-Kuhn-Tucker conditions. Given our proposed solutions, these conditions fall

into one of two categories: conditions for periods that have 0 attention devoted to

them and periods that have K units of attention devoted to them.

In particular, it is easy to check that both the latter set of periods (those where

α�t = K) and the former (where α�t = 0) will satisfy the Karush-Kuhn-Tucker

conditions if there exist κ ≥ 0 (i.e., the Lagrange multiplier on total attention) and
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µ ≥ 0 (i.e., the Lagrange multiplier on non-negativity of attention) such that

(1 + λK)V ′(K) + λV (K)− κ = 0

V ′(0) + λV (0)− κ+ µ = 0.

Recall that V ′(K) = 0. Moreover, since V (K) > V (0), such κ ≥ 0 and µ ≥ 0 exist

for large enough λ.

We now turn to checking second-order conditions for sufficiency. In particular, we

first compute the Hessian of the Lagrangian H (i.e., the matrix of cross partials). It

is easy to verify that the cross partials with respect to t and t′ are not equal to 0 if

and only if t = t′.

Sufficiency is satisfied if for all vectors s of length T , where
∑

t st = 0 and st +

α→t ≥ 0 for all t, it is the case that sTHs > 0, where α→t is an optimal attention

allocated to period t. We can provide a lower bound on sTHs by considering a shift

of attention from a single period t, which currently is receiving K units of attention,

to a single other period t′ that is currently receiving 0 units of attention and devoting

all of its attention to period t.

Algebra then shows that we need it to be the case that (1+λK)V ′′(K)+2λV ′(0)+

V ′′(0) < 0, which is the condition assumed prior to the proposition for large λ.

For iii), note that since each such allocation first (in a lexicographic fashion) maxi-

mizes the sum of attention utility across time and then the sum of instrumental utility,

increasing λ only improves it relative to all others, and hence, the neighborhood in

which it is strictly optimal increases in the weight on attention utility, λ.

Thus, for λ large enough, (10) is maximized by α�t for t = 1, . . . , T , such that∑T
t=1 α�t = T .

Lastly, note that such optima can be achieved in the original problem by, e.g.,

choosing αt�K(t) = 1 where K(t) ≡ d t
K
eK for all t; other attention allocations can also

achieve such optima. To show that they can be implemented without commitment,

consider the aforementioned attention allocation and the DM at time t and suppose

αt′�K(t′) = xt′�K(t′) = 1 for all t′ < t. Note that this DM’s objective is maximized

with αt′�K(t′) = xt′�K(t′) = 1 for all t′ ≥ t. Since this holds for all t, choosing

αt�K(t) = xt�K(t) = 1 is indeed an equilibrium outcome.
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C.6 Proof of Proposition 7

Proof of Proposition 7. Since players (the DM in different periods) take actions se-

quentially, their choice set is compact, and their payoffs are continuous, the existence

of a subgame-perfect equilibrium (the no-commitment solution) follows from, e.g.,

Hellwig et al. (1990). Continuity of the DM’s objective and a compact choice set

guarantee the existence of a commitment solution.

Fix any α1 = (α1�c, α1�o) and consider

V̂c(α1�c, α2�c) + V̂o + ξλ(α1�cV̂o(α1�c, α2�c) + α1�oV̂o)

+ λ(α2�cV̂c(α1�c, α2�c) + α2�oV̂o).

This expression equals (3) for ξ = 1 and for ξ = 0, it is period-2 self’s objective.

Fix any α1. Since λ(α1�cV̂o(α1�c, α2�c) + α1�oV̂o) is increasing in α2�c, the above

expression has increasing differences in (α2�c, ξ) and so the result follows from Topkis’s

Theorem.

C.7 Proof of Proposition 8

Proof of Proposition 8. The proof is constructive. We first construct a point for large

λ such that

• (Step 1) period-1 self is indifferent between that point and devoting no attention

in either period,

• (Step 2) period-2 self strictly prefers this point to devoting no attention,

• (Step 3) period-1 self wants period-2 self to increase attention to the non-trivial

payoff, while period-2 self wants to decrease it.

• (Step 4) We then construct a nearby point that both selves prefer to devoting

no attention, and such that period-2 self still prefers to deviate and not devote

attention, fixing period-1 self’s attention; which leads period-1 self to choose

(0, 0) when there is no commitment.

Step 1. We first note that (0, 0) is a strict local maximum of (3) for large enough λ,

which we eventually use to ensure that the no-commitment outcome has no attention

devoted to the non-trivial payoff in both periods.
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Let the value of (3) for (α1�c, α2�c) be denoted by V1(α1�c, α2�c).

Claim 1. For λ large enough, (0, 0) is a strict local maximum of V1.

For ease of exposition, the proofs of the claims are at the end of this section.

Given that (0, 0) is a local maximum and that V̂o < V̂c(1, 0), there exists a smallest

strictly positive level of attention devoted by period-1 self to the non-trivial payoff,

¯
α1�c, such that V1(

¯
α1�c, 0) = V1(0, 0).

Claim 2. Let A1(λ) ≡ {α1�c : V1(α1�c, 0) = V1(0, 0), α1�c > 0}. For λ >
¯
λ, where

¯
λ

is defined in the proof of Claim 1, we have:

i)
¯
α1�c(λ) ≡ minα1�c∈A1(λ) α1�c exists,

ii)
¯
α1�c(λ) < α̃1�c, where α̃1�c is implicitly defined by V̂c(α̃1�c, 0) = V̂o,

iii)
¯
α1�c(λ) is increasing in λ, and

iv) limλ→∞
¯
α1�c(λ) = α̃1�c

By construction, period-1 self is indifferent between (0, 0) and (
¯
α1�c(λ), 0) and

(0, 0), provided λ is large enough.

Step 2. We next note that period-2 self strictly prefers (
¯
α1�c(λ), 0). Intuitively,

period-1 self’s indifference implies that there is a cost in terms of attention utility

when comparing (0, 0) and (α1�c, α2�c), and since period-2 self does not value period-

1 self’s attention utility, it strictly prefers the attention allocation that is more costly,

in terms of attention utility.

Let V2(α1�c, α2�c) = V̂c(α1�c, α2�c) + V̂o + λ(α2�cV̂c(α1�c, α2�c) + α2�oV̂o) denote

the DM’s period-2 objective.

Claim 3. If λ > 0, V1(0, 0) = V1(α1�c, α2�c) and α1�c > 0, then there exists δ > 0 so

that V2(α1�c+y1, α2�c+y2) > V2(0, 0) for all (y1, y2) ∈ [−δ, δ]2, with (α1+y1, α2+y2) ∈
[0, 1]2.

Step 3. Next, we consider the incentives at attention allocation at (α1�c, α2�c) =

(
¯
α1�c(λ), 0). In particular, note that since the derivatives of V̂c are bounded away
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from zero and
¯
α1�c(λ) is positive and increasing, for large enough λ, period-1 self

strictly prefers to increase α2�c, i.e.,

∂V1

α2�c
(
¯
α1�c(λ), 0) = (1 + λα2�c)

∂V̂c
∂α2�c

(
¯
α1�c(λ), 0)− λ(V̂o − V̂c(α1�c(λ), 0) > 0.

For period-2 self’s incentives, since V1(
¯
α1�c(λ), 0) = V1(0, 0), some simple algebra

steps imply λ(V̂o − V̂c(α1�c(λ), 0) =
V̂ (

¯
α1�c(λ),0)−V̂c(0,0)

¯
α1�c(λ)

and so we have

∂V2

α2�c
(
¯
α1�c(λ), 0) =

∂V̂c
∂α2�c

(
¯
α1�c(λ), 0)− λ(V̂o − V̂c(α1�c(λ), 0)

=
∂V̂c
∂α2�c

(
¯
α1�c(λ), 0)− V̂ (

¯
α1�c(λ), 0)− V̂c(0, 0)

¯
α1�c(λ)

.

(11)

By Claim 2,
¯
α1�c(λ) = α̃1�c as λ→∞. Thus, using as long as period-2 attention is

sufficiently non-instrumental, i.e.,

∂

∂α2�c
V̂c(α̃1�c, 0) <

V̂o − V̂c(0, 0)

α̃1�c
,

it follows that (11) is negative, for large λ.

Step 4. Recall, the next step is to construct a point near (
¯
α1�c(λ), 0) that both

selves prefer to devoting no attention, and such that period-2 self still prefers to

deviate from it and not devote attention, fixing period-1 self’s attention; which leads

period-1 self to choose (0, 0) when there is no commitment.

Take λ large enough, so that (0, 0) is a strict local maximum, ∂V1
α2�c

(
¯
α1�c(λ), 0) > 0,

and ∂V2
α2�c

(
¯
α1�c(λ), 0) < 0. Then, there exists δ̄ > 0 such that for all 0 < δ, δ′ < δ̄,

i) there exists a point in [
¯
α1�c(λ) − δ,

¯
α1�c(λ)] × [0, δ′] that period-1 self strictly

prefers to (0, 0) (since V̂c is continuously differentiable and ∂V1
∂α2�c

(
¯
α1�c(λ), 0) > 0,

period-1 self strictly prefers, e.g., (
¯
α1�c(λ), δ′) to (0, 0) for δ′ small enough),

ii) period-2 self strictly prefers all attention allocations in [
¯
α1�c − δ,

¯
α1�c] × [0, δ′]

to (0, 0) (follows from Claim 3), and

iii) period-2 self strictly prefers (α1�c, 0) to (α1�c, α2�c) for any (α1�c, α2�c) ∈
[
¯
α1�c(λ) − δ,

¯
α1�c(λ)] × (0, δ′] (again, since V̂c is continuously differentiable,

and since ∂V2
∂α2�c

(
¯
α1�c(λ), 0) < 0).
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Since (0, 0) is a strict local maximum, there exists δ̃ > 0 such that for every

0 < δ < δ̃, period-1 self strictly prefers (0, 0) to (α1�c, α2�c) for any (α1�c, α2�c) ∈
[0, δ]2, (α1�c, α2�c) 6= (0, 0).

Since period-1 self strictly prefers (0, 0) to (α1�c, 0) for any α1�c ∈ [δ̃,
¯
α1�c(λ)− δ̄]

(by definition of
¯
α1�c(λ)) and since V1 is continuous, there exists ε > 0 such that

period-1 self strictly prefers (0, 0) to (α1�c, α2�c) for any (α1�c, α2�c) ∈ [δ̃,
¯
α1�c(λ)−

δ̄]× [0, ε].

Finally, let (ᾱ1�c, ᾱ2�c) = (
¯
α1�c(λ),min{δ̄, δ̃, ε,

¯
α1�c(λ)}).

By construction, there exists a point in [ᾱ1�c− δ̄, ᾱ1�c]× [0, ᾱ2�c] that both period-

1 self and period-2 self strictly prefer to (0, 0). Furthermore, again by construction,

period-1 self prefers (0, 0) to any (α1�c, α2�c) ∈ [0, ᾱ1�c − δ̄] × [0, ᾱ2�c]; thus, the

commitment solutions is preferred by the DM in both periods.

However, given any period-1 attention in ᾱ1�c − δ̄, period-2 self chooses not to

devote any attention, which leads to an attention allocation period-1 self strictly dis-

prefers to (0, 0). Since all attention allocation in [0, ᾱ1�c−δ̄]×[0, ᾱ2�c] are dispreferred

to (0, 0) by period-1 self (and strictly so if the attention allocation is not (0, 0)), the

unique no-commitment outcome is (α1�c, α2�c) = (0, 0).

Note that with commitment, the DM devotes attention to the non-trivial payoff

in both periods. If α1�c = 0, then the DM is time-consistent, and so they could im-

plement the commitment solution without commitment, a contradiction; if α1�c = 0,

then period-2 self cannot reduce their attention to the non-trivial payoff, and so again

the commitment solution can be implemented without commitment, a contradiction.

Lastly, without the attention bounds and since V̂0 < V̂c(1, 0), the unique outcome

with and without commitment is (α1�c, α2�c) = (1, 1).

Proof of Claim 1. We have

∂V1

∂α1�c
(0, 0) =

∂V̂c
∂α1�c

(0, 0)− λ(V̂o − V̂c(0, 0)), and

∂V1

∂α2�c
(0, 0) =

∂V̂c
∂α2�c

(0, 0)− λ(V̂o − V̂c(0, 0)).

Since V̂c is strictly increasing and V̂c(0, 0) < V̂o, for λ >
¯
λ ≡ max{

∂
∂α1�c

V̂c(0,0)

V̂o−V̂c(0,0)
,

∂
∂α2�c

V̂c(0,0)

V̂o−V̂c(0,0)
},

both of the derivatives above are strictly negative and so (0, 0) is a strict local maxi-

mum of V1.
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Proof of Claim 2. For the first subclaim, note that A1(λ) for λ >
¯
λ is non-empty since

(0, 0) is a strict local maximum of V1 and V̂o < V̂c(1, 0) implies V1(1, 0) > V (0, 0), and

that it is compact by continuity of V1. Thus, the minimum exists.

The second subclaim follows since, by definition of α̃1�c, we have V1(α̃1�c, 0) >

V1(0, 0), and by continuity of V1.

The third subclaim follows since V1(α1�c, 0)− V1(0, 0) = (V̂c(α1�c, 0)− V̂c(0, 0))−
λα1�c(V̂o− V̂c(α1�c, 0)) is decreasing in λ for all α1�c < α̃1�c because V̂c(α̃1�c, 0) = V̂o

and V̂c is increasing. Thus, for any λ, λ′ with λ′ > λ and any α1�c ∈ (0,
¯
α1�c(λ)),

since (V̂c(α1�c, 0)− V̂c(0, 0))−λα1�c(V̂o− V̂c(α1�c, 0)) < 0, we also have (V̂c(α1�c, 0)−
V̂c(0, 0))− λ′α1�c(V̂o − V̂c(α1�c, 0)) < 0 and the result follows.

For the final subclaim, since
¯
α1�c(λ) is increasing in λ (third subclaim) and

bounded above (second subclaim), it must converge as λ → ∞. Suppose
¯
α1�c(λ) →

y < α̃1�c. Since V̂o > V̂c(y, 0), as y < α̃1�c, we have V1(y, 0) < V1(0, 0) for large

λ. But since V1 is continuous and V1(
¯
α1�c(λ), 0) = V1(0, 0) for all λ large enough, it

must be that V1(y, 0) = V1(0, 0), i.e., we have a contradiction.

Proof of Claim 3.

V2(0, 0) = V̂c(0, 0) + V̂o + λV̂o

= V1(0, 0)− λV̂o
= V1(α1�c, α2�c)− λV̂o
= (1 + λ(α1�c + α2�c))V̂c(α1�c, α2�c) + (1 + λ(1− α1�c + 1− α2�c))V̂o − λV̂o
= V2(α1�c, α2�c)− λα1�c(V̂o − V̂c(α1�c, α2�c))

< V2(α1�c, α2�c),

where the inequality follows as V1(0, 0) = V1(α1�c, α2�c) implies V̂o > V̂c(α1�c, α2�c).

The claim follows by continuity.

C.8 Proof of Proposition 9

Proof of Proposition 9. The first claim follows from Proposition 1, the second from

Topkis’s Theorem since the DM’s objective has increasing differences in (αw, vH). For

the third, note that the cross-partial derivative of the DM’s objective with respect to
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αw and vL is given by

λ(1− p(αw))− (1 + λαw)
∂

∂αw
p(αw).

If p(αw) + αw
∂

∂αw
p(αw) < 1 everywhere, then the above becomes positive for large

enough λ and the claim follows again from Topkis’s Theorem.28

C.9 Proof of Proposition 10

Proof of Proposition 10. For the first claim, fix x1 and consider a state s ∈ S. Clearly,

if max(x2,α2),x2∈X2(α2) Vc(x1, x2|s) ≥ Vo, solving (4) gives α2�c = 1 as the optimal atten-

tion allocation (for any λ), i.e., indeed s 6∈ S̄(x1). If max(x2,α2),x2∈X2(α2) Vc(x1, x2|s) <
Vo, then for λ large enough, (4) is maximized by α2�c = 0. Since S is finite, taking the

maximum lower bound on λ (over finite x1 ∈ X1(α1) and s ∈ S) implies the result.

For the second claim, note that since X1(α1) is independent of α1 and β = 0,

period-1 attention utility is independent of x1. This is because period-1 self cannot

affect the highest payoff, which it devotes all attention to: If the highest payoff is the

non-trivial payoff in some state s, then period-2 self will devote all attention to it,

and so the default does not bind and since β = 0, there is no direct impact; if the

highest payoff is the trivial payoff, then, of course, period-1 self does not affect it.

Thus, the DM only maximizes (4) in both periods. But then the claim follows

immediately since it is as if the DM jointly chooses the states in which they devote

attention to the non-trivial payoff as well as x1; if the claim were not true, the DM

could improve their overall utility by choosing x∗1 equal to the argmax given S̄(x1),

since the choice of x1 only affects payoffs in those states.

For the final claim, not that from the first claim, we know for any x′1, S̄(x′1) is

independent of λ for large λ, i.e., x2(x′1, s) and α2(x′1, s) are independent of λ. Thus,

28E.g., take λ >
maxαw

∂
∂αw

p(αw)

minαw (1−p(αw)+αw
∂

∂αw
p(αw)

.
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the sum of period-1 attention utility and expected period-2 attention utility, i.e.,

∑
s∈S

α1�(c,s)(vc(x
′
1, x2(x′1, s)|s) + βu(x′1|s)) + α1�oVo︸ ︷︷ ︸
period-1 attention utility

+
∑
s∈S

ps(α2�c(x
′
1, s)(vc(x

′
1, x2(x′1, s)|s) + βu(x′1|s)) + α2�o(x

′
1, s)Vo)︸ ︷︷ ︸

expected period-2 attention utility

,

is independent of λ, for large λ. Thus, the optimal action taken by period-1 self must

maximize the expression above; otherwise, it cannot be optimal for large λ (and since

X1(α1) is finite).

Also, note that period-2 choice is optimal for period-1 self for large λ: Period-1

attention utility is determined by either the trivial payoff, in which case period-2

choice does not affect it, or the non-trivial payoff in some state s, in which case

period-2 self devotes attention if and only if the payoff is at least the attentional

outside option, as period-1 self would also dictate. Thus, x1, the optimal period-

1 action, must also maximize the above when S̄(x′1) is held fixed at S̄(x1). Since

S̄(x1) 6= S, x1 maximizing the above means that it also maximizes

Vc(x
′
1, x2(x′1, s

∗)|s∗)︸ ︷︷ ︸
period-1 attention utility

+
∑

s∈S\
¯
S(x1)

ps(vc(x
′
1, x2(x′1, s)|s) + βu(x′1|s)) +

∑
s∈

¯
S(x1)

psVo︸ ︷︷ ︸
expected period-2 attention utility

where s∗ ∈ arg maxs∈S Vc(x
′
1, x2(x′1, s

∗)|s∗). But then the claim immediately follows

for p̃s = ps for s ∈ S \ S̄(x1) such that s 6= s∗ and p̃s∗ = ps∗ + 1, since vc(x
′
1, x2(x′1|s)

is independent of x′1 for s ∈ S \ S̄(x1) and Vo is also independent of x′1.

C.10 Proof of Proposition 11

Proof of Proposition 11. Fix any (x, α) with x ∈ X(α). Take any D,D′ ∈ B and

consider B′ := (B ∪ {D ∪D′}) \ {D,D′}, i.e., an alternative bracketing where sets D

and D′ are considered jointly. Evaluate (8) at (x, α) and B′ and subtract its value

given (x, α) and B; after some simplifications, we have

− |D||D
′|λ

|D|+ |D′|
(ᾱD − ᾱD′)(V̄D(x)− V̄D′(x)).
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Optimality then implies that the above is non-positive, i.e., if V̄D(x) > V̄D′(x), then

ᾱD ≥ ᾱD′ .

D General model and robustness

As is true for every model, the approach pursued in the body of the paper makes

several functional form assumptions. Although natural, these assumptions raise the

question of whether the intuitions in the paper are robust to either more general

functions or alternative specifications. The goal of this appendix is three-fold. First,

in Section D.1, we discuss specific functional form assumptions that we make and

suggest alternatives and generalizations. Then, in Section D.2, we provide a more

general model that encompasses all the alternatives we suggest. Lastly, in Section D.3,

we discuss what conditions on the general model still ensure that our main intuitions

from the body of the paper still hold.

D.1 Relaxing specific functional form assumptions

We first discuss specific function form assumptions, as well as generalizations and

alternatives to the assumptions and how they matter for behavior. Here, we focus on

exploring each assumption in isolation; in Section D.2, we consider a functional form

that relaxes all of them at once.

D.1.1 Functional dependence on attention and payoff

We assumed that attention utility in each dimension is linear in the product of at-

tention to that dimension and the payoff in that dimension. Doing so allows us to

highlight the novel behaviors that attention utility can accommodate even under these

restrictive assumptions while ruling out alternative drivers of behavior (like nonlin-

ear anticipatory utility). We can generalize this, though: Let attention utility for

dimension i be

ψ(αi, Vi(x)),

where ψ is a continuous function that maps from [0, 1] × R to a real scalar and is

increasing in both arguments. (To rationalize the motivating evidence of (in)attention

to (low) high payoffs, such as the ostrich effect, one may impose payoff Vi(x) and
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attention αi to be complements, i.e., ψ to have increasing differences.) We next

discuss two particular examples of functions that lie between the model in the body

of the paper and the general model presented here.

One such example is ψ(αi, Vi(x)) = αih(Vi(x)), where h is a (potentially nonlinear)

continuous, increasing function that maps from R to R. Thus, payoffs may enter

attention utility nonlinearly. Nonlinearity of anticipated payoffs is a key feature of

models of anticipatory utility and intrinsic preferences for information, such as Caplin

and Leahy (2001), Kreps and Porteus (1978), or Epstein and Zin (1989), and drives

preferences for earlier or later resolution of information. Importantly, our base model

in the body of the paper can generate “non-standard” behavior even absent this

additional curvature.

Alternatively, attention may enter attention utility nonlinearly: ψ(αi, Vi(x)) =

f(αi)Vi(x), where f : [0, 1] → [0, 1] is continuous and increasing. Thus, attention

utility may exhibit increasing or decreasing returns to attention (conditional on action

x). One implication is an additional mechanism that may drive probability weighting

when attention is allocated across states (Section 2.4). To illustrate, suppose that

f(αi) = min{αi, l}, where l > 1/2. Suppose that attention is not instrumental, so the

mechanism that generates inverse-S-shaped probability weighting in the body of the

paper is eliminated. If l = 1, we are back to the standard model where this setting

leads to optimism—the high-payoff state is overweighted. However, if l < 1, the DM

always devotes some attention to all states, namely l attention to the high-payoff

state and 1− l to the low-payoff state. Thus, states with a probability less than 1− l
are again overweighted, and those with a probability more than l are underweighted.

Notice also that a concave f leads to a preference for spreading attention across

many dimensions—in this case, individuals may prefer to defer the resolution of un-

certainty if doing so allows them to devote attention to multiple (not yet realized)

states.

D.1.2 Attentional spillovers

A second assumption we make is that attention utility from dimension i is a function

of αi only (conditional on action x) rather than the entire attention vector α. Such an

assumption may be unnatural; e.g., in Appendix B, we discuss how individuals may

want to “bracket” multiple dimensions together so that if they think about dimension

i (e.g., schoolwork), they must also think about dimension j (e.g., getting ice cream
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after finishing schoolwork).

Such attentional spillovers may also be a natural feature of the environment.

For example, consider a situation where we measure time in minutes. In this case,

thinking about what occurs at 12:01 PM may necessitate also thinking about what

happens at 12:00 PM and 12:02 PM. More generally, there are a variety of situations

where attention to one dimension naturally leads one to think about other dimensions

simply due to temporal or mental adjacency.

To accommodate these attentional spillovers, one may write attention utility from

dimension i as

gi(α)Vi(x),

where gi : [0, 1]|D| → [0, 1] is continuous with gi(α) as the “effective attention” dimen-

sion i receives as a function of the entire attentional vector. For instance, dimensions

i and j may then form a bracket if gi(α) = gj(α) =
αi+αj

2
(see Appendix B, where gi

is a choice variable).

D.1.3 Dependence on the weight assigned to a dimension in the material

utility

A third assumption is that the attention utility from dimension i is independent of

the weight ωi assigned to i in the material utility. This assumption, we feel, more

than the previous ones (and the following ones), is a substantive restriction on the

psychology of attention.

In some situations, the assumption seems reasonable. For example, someone may

get the same utility from thinking about what their life would be like if their $100

million lottery ticket was a winner, regardless of the odds; intuitively, the individual

imagines their life conditional on a state, and so the likelihood of that state does

not matter. On the other hand, in many applications, this assumption may feel odd.

If we think of dimensions as having a temporal dimension, but certain dimensions

stretch longer than others (e.g., one covers 5 minutes, the other a day), then it

is potentially incorrect to assume that they loom equally large in attention utility.

Even more starkly, one might ask how an individual could gain utility from thinking

about situations that are not just improbable—but impossible.

Such concerns may be particularly pertinent in our applications that suppose

different dimensions correspond to different states of the world. Here, the approach
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taken in the body of the paper requires us to distinguish between states that have

zero weight in material utility (i.e., pi = 0) but can attract attention versus those

that have zero weight and cannot attract attention. To address such concerns, we

allow for the weights on dimensions in material utility to impact attention utility.

The first, and perhaps most obvious, way to proceed is to add the weight of

dimension i, ωi as a multiplicative factor in the attention utility for dimensions i.

That is, attention utility from dimension i becomes

αiωiVi(x).

Immediately then, if a dimension has 0 weight in the material utility, it cannot gen-

erate non-zero attention utility.

Although such a model parsimoniously addresses the concerns raised above, it

introduced a new, more subtle, concern related to event splitting, which we call “di-

mension splitting.” Event splitting has been discussed extensively when considering

choice over risk, e.g., Starmer and Sugden (1993); Humphrey (1995); Birnbaum and

Navarrete (1998), and in riskless domains, e.g., Weber et al. (1988); Bateman et al.

(1997). In order to understand the concerns, we first formally define what we mean

by dimension splitting in our framework.

Take a dimension i and remove it, but add two dimension i′ and i′′, such that

Vi = Vi′ = Vi′′ , with ωi′ + ωi′′ = ωi. In the domain of risk, this is equivalent to the

notion of event splitting. With the weights on material utility determining attention

utility, the optimal attention allocation (and action) may change: α∗i need not equal

α∗i′+α
∗
i′′ . This is because ωi and αi are complements in attention utility. Consequently,

the DM’s behavior may differ; for example, in the domain of risk, it can lead to a

different pattern of probability weighting across the two problems.

Consistent with the predictions of this theory, behavior changing due to event

splitting has been documented as a robust empirical phenomenon in experimental

settings (see previous references as well as more recent work like Birnbaum et al.

(2017)). That said, it is not clear whether we always want a model that predicts

behavior should change in response to dimension splitting. Thus, we would like to

have a generalized approach that can either make behavior invariant to or dependent

on dimension splitting, depending on the specific assumptions.
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We do so by assuming attention utility from dimension i is

gi(α)Ωi(ω)Vi,

where Ωi is a continuous function that typically maps from the vector of weights to

a weakly positive real scalar (although for one example in Section D.2, we assume Ωi

maps to R+ × R+). When gi(α) = αi and Ωi(ω) = ωi, we recover the “naive” model

proposed above, where behavior can change when a dimension is split.

However, we can also impose assumptions such that behavior is invariant to di-

mension splitting. To this end, add a new primitive of the model, a set of “mirror”

dimensions: Define a mirroring J ∈ P(D), i.e., a partition of the set of dimensions,

and denote J(i) as the mirror that contains dimension i. Two dimensions are in the

same mirror if they come from a split dimension. We then make Ωi functions of J . In

particular, we can let gi(α) = αi and Ωi(ω) =
∑

j∈J(i) ωj. Now, dimension splitting

need not affect behavior; e.g., if there is no instrumental role of attention, the DM’s

attention allocation is essentially unchanged. Of course, as discussed, whether or not

we want to impose assumptions that make behavior invariant, or not, to dimensions

splitting is an empirical question.

D.1.4 Additive separability of material and attention utility

We also assumed material utility is additively separable from attention utility. This

separation between material utility, which we conceive of as the utility that “stan-

dard” approaches analyze, and attention utility, which is our novel contribution, helps

lay out what features of our model generate novel behavioral predictions and, more

generally, also allows to conduct comparative static exercises with respect to the

weight on attention utility.

Nevertheless, generalizing our approach is, in principle, relatively easy. By com-

bining (and extending) the generalizations already proposed in the previous points,

we naturally generate a model that both i) nests the model in the body of the paper

where material and attention utility are additively separable but ii) does not require

that this be the case. Let overall utility—and not just attention utility—(from di-

mension i) be defined as

ς(αi, ωi, Vi(x)),

where ς : [0, 1] × R+ × R → R is continuous and increasing in all its arguments. If
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ς(αi, ωi, Vi(x)) = ωiVi(x) + λαiVi(x), then we have recovered the model used in the

body of the paper. But, of course, this functional form can also naturally allow for

other interactions between the attributes and attention of a dimension.

D.1.5 Additive separability across dimensions

Lastly, we assumed utility across different dimensions is additively separable. Al-

though, as discussed, the previous assumption can be generalized in various ways

while maintaining key intuitions, we do not believe this is the case for this assump-

tion. In particular, the most natural generalization is to relax the additive separability

across dimensions to just separability. As it turns out, some of our main results can-

not be maintained with functions that are simply separable (rather than additively

separable) in attention utility across different dimensions.

By way of example, consider a multiplicative version of our model where there is

no material utility and where total attention utility is the product of the attention

utility from any given dimension. To keep things simple, suppose that there are only

two dimensions. Then, attention utility is

(αiVi)(αjVj).

This immediately introduces some problems in recreating the intuitions from the

body of the paper. In particular, notice that in this functional form, returns to αi

and αj are exactly the same. This means that changes in Vi (as in Proposition 1)

affect the incentive to increase αi and αj equally. In fact, the model implies that the

DM should want to set αi = αj so long as Vi, Vj > 0, which bears little resemblance

to the nuanced implications for attentional allocation that our model (which embeds

additive separability) generates.

D.2 A general functional form

In the previous subsection, we discussed how to relax four key functional form assump-

tions (and how one—additive separability across dimensions—could not be relaxed).

Combining the insights and generalizations suggested across those four discussions
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leads us to a general functional form for the overall utility given by∑
i

φ(gi(α),Ωi(ω), Vi(x)).

We assume φ, gi and Ωi have the properties described in Section D.1, and φi is a

continuous function mapping from [0, 1]×R+×R to R (although in one case, see the

third bullet point below, we consider a slightly mapping for both Ωi and φi). This

general function nests the formulations suggested in the previous subsections:

• Section D.1.1: gi(α) = αi, Ωi(ω) = ωi, and φ(gi,Ωi, Vi) = ΩiVi + λψ(gi, Vi).

• Section D.1.2: Ωi(ω) = ωi, and φ(gi,Ωi, Vi) = ΩiVi + λgiVi.

• Section D.1.3: Consider a slightly modified version of Ωi and φ so that Ωi is a

continuous mapping from a vector of weights, to a doubleton of scalars (ωMi , ω
A
i )

(for weight on material and attention utility, respectively), and φ(gi,Ωi, Vi) =

ωMi Vi + λgiω
A
i Vi.

• Section D.1.4: gi(α) = αi, Ωi(ω) = ωi.

D.3 Generalizing Propositions 1– 3

One concern is that the general model introduced in the previous subsection may be

“too general” in that it may not always generate the key intuitions that drive the

behavior described in the paper; in this section, we show under which restrictions

Propositions 1–3 generalize.

To begin, we parameterize payoff Vi in the same way as in the body of the paper:

Vi(x) = γi + βvi(x). We also provide a definition that generalizes the notion of

separability.

Definition 2. The environment is separable-g if

• action x is a vector x = (xi)i∈D, payoff Vi(xi, x−i) is independent of x−i for all

i and xi, and X(α) = Πi∈DXi(gi(α)).

• Xi is monotone, i.e., Xi(gi) ⊆ Xi(g
′
i) for all gi ≤ g′i.
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Recall that Proposition 1 made two claims: i) if the payoff level of dimension i

goes up, attention to i goes up, and if the environment is separable, then the part of

the payoff determined by actions also goes up; and ii) if the slope (with respect to

the action) of the payoff function increases in dimension i (controlling for the level)

then the part of the payoff in dimension i determined by the action goes up, and if

the environment is separable, attention to i also goes up.

The following results say that the second finding immediately generalizes, while

the first one generalizes under the assumption that φ has increasing differences in

(gi(α), Vi(x)). All proofs of the propositions in this section are in Section D.4.

Proposition 1-g. Consider dimension i ∈ D. Fix V−i, and let Γ(γi, βi) denote the

set of optimal (action, attention)-pairs.

• Suppose φ has strictly increasing differences in (gi(α), Vi(x)). If γ′i > γi, then

min(x,α)∈Γ(γ′i,βi)
gi(α

′) ≥ max(x,α)∈Γ(γ′i,βi)
gi(α). If, in addition, the environment

is g-separable, then min(x,α)∈Γ(γ′i,βi)
vi(x) ≥ max(x,α)∈Γ(γi,βi) vi(x).

• If for βi and γi, max(x,α)∈Γ(γi,βi) Vi(x) = min(x,α)∈Γ(γi,βi) Vi(x), then for any β
′
i >

βi and γ
′
i = γi−(β

′
i−βi)vi(x), where (x, α) ∈ Γ(γi, βi), we have min(x,α)∈Γ(γ′i,β

′
i)
vi(x) ≥

max(x,α)∈Γ(γi,βi) vi(x). If, in addition, the environment is g-separable, then min(x,α)∈Γ(β′i,γ
′
i)
gi(α) ≥

max(x,α)∈Γ(βi,γi) gi(α).

Proposition 2 considered comparative statics in the weight on attention utility, λ.

It thus requires a clear distinction between material and attention utility, parameter-

ized by a relative weight. To generalize Proposition 2, we first formulate a version of

the general functional form that allows for a similar distinction. In particular, mate-

rial utility is defined as utility that does not directly depend on attention; attention

utility, instead, may depend on attention directly.

Proposition 2-g. Suppose φ(gi(α),Ωi(ω), Vi(x)) = UM(ΩM
i (ω), Vi(x))+λUA(gi(α),ΩA

i (ω), Vi(x))

for all i ∈ D. Consider a change of parameter λ to λ′ with λ′ > λ and let x and x′

denote the optimal actions, respectively. We have:

•
∑

i U
M(ΩM

i (ω), Vi(x)) ≥ UM(ΩM
i (ω), Vi(x

′));

• if φ is convex in Vi(x), then the DM’s value is convex in (γi)i∈D;
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• if the environment is g-separable, for each i ∈ D, if UA(gi(α),ΩA
i (ω), Vi(x)) =

gi(α)UM(ΩM
i (ω), Vi(x)), gi(α) = fi(αi) for some strictly increasing fi, and the

objective given λ is convex in αi, then the objective is also convex in αi given

λ′.

Proposition 3 considered exogenous weight on material and attention utility in a

given dimension; thus, the generalization of Proposition 3 again requires a distinction

between material utility and attention utility. As it turns out, the multiplicative

structure of the weights in the base model can be relaxed to increasing differences.

Proposition 3-g. Suppose φ(gi(α),Ωi(ω), Vi(x)) = UM(ΩM
i (ω), Vi(x))+λUA(gi(α),ΩA

i (ω), Vi(x)),

where ΩM
i = Ω̃A

i +ηMi and ΩA
i = Ω̃A

i +ηAi for all i ∈ D. Consider dimension i ∈ D. Fix

g−i,Ω
M
−i,Ω

A
−i, and V−i. Let Γ(ηMi , η

A
i ) denote the set of optimal (action, attention)-

pairs.

• Suppose UM has increasing differences in (Vi(x),ΩM
i (ω)). If ηM

′
i > ηMi , then

min(x,α)∈Γ(ηM
′

i ,ηAi ) Vi(x) ≥ max(x,α)∈Γ(ηMi ,ηAi ) Vi(x). If, in addition, the environ-

ment is g-separable, then min(x,α)∈Γ(ηM
′

i ,ηAi ) gi(α) ≥ max(x,α)∈Γ(ηMi ,ηAi ) gi(α).

• Suppose UA has increasing differences in (gi(α),ΩA
i (ω)) as well as in (Vi(x),ΩA

i (ω)).

If the environment is g-separable then, if ηA
′

i > ηAi , we have

min
(x,α)∈Γ(ηMi ,ηA

′
i )
Vi(x) ≥ max

(x,α)∈Γ(ηMi ,ηAi )
Vi(x), and

min
(x,α)∈Γ(ηMi ,ηA

′
i )
gi(α) ≥ max

(x,α)∈Γ(ηMi ,ηAi )
gi(α).
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D.4 Proofs of Section D.3

Proof of Proposition 1-g. Take any γ′i, γi with γ′i > γi and βi. Let (x, α) and (x′, α′)

denote a solution given γi and γ′i, respectively. Optimality of (x, α) and (x′, α′) implies∑
j∈D\{i}

φ(gj(α),Ωj(ω), Vj(x))

︸ ︷︷ ︸
:=κ0

+φ(gi(α),Ωi(ω), βivi(x) + γi)

≥
∑

j∈D\{i}

φ(gj(α
′),Ωj(ω), Vj(x

′))

︸ ︷︷ ︸
:=κ1

+φ(gi(α
′),Ωi(ω), βivi(x

′) + γi) and

∑
j∈D\{i}

φ(gj(α
′),Ωj(ω), Vj(x

′))

︸ ︷︷ ︸
:=κ1

+φ(gi(α
′),Ωi(ω), βivi(x

′) + γ′i)

≥
∑

j∈D\{i}

φ(gj(α),Ωj(ω), Vj(x))

︸ ︷︷ ︸
:=κ0

+φ(gi(α),Ωi(ω), βivi(x) + γ′i).

Combining the above gives

− (φ(gi(α),Ωi(ω), βivi(x) + γ′i)− φ(gi(α
′),Ωi(ω), βivi(x

′) + γ′i))

≥κ0 − κ1

≥− (φ(gi(α),Ωi(ω), βivi(x) + γi)− φ(gi(α
′),Ωi(ω), βivi(x

′) + γi)) .

Since φ has strictly increasing differences in (gi(α), Vi(x)), it must be that gi(α
′) ≥

gi(α).

If the environment is g-separable, then vi is increasing in gi(αi), and the result

follows.

Take any βi, β
′
i ≥ 0 with β′i > βi and γi and suppose that max(x,α)∈Γ(γi,βi) Vi(x) =

min(x,α)∈Γ(γi,βi) Vi(x). Let γ
′
i = γi − (β

′
i − βi)vi(x), where (x, α) ∈ Γ(γi, βi). Let (x, α)

and (x′, α′) denote a solution given (βi, γi) and (β′i, γ
′
i), respectively. Optimality of
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(x, α) and (x′, α′) implies∑
j∈D\{i}

φ(gj(α),Ωj(ω), Vj(x))

︸ ︷︷ ︸
:=κ2

+φ(gi(α),Ωi(ω), βivi(x) + γi)

≥
∑

j∈D\{i}

φ(gj(α
′),Ωj(ω), Vj(x

′))

︸ ︷︷ ︸
:=κ3

+φ(gi(α
′),Ωi(ω), βivi(x

′) + γi) and

∑
j∈D\{i}

φ(gj(α
′),Ωj(ω), Vj(x

′))

︸ ︷︷ ︸
:=κ3

+φ(gi(α
′),Ωi(ω), β′ivi(x

′) + γ′i)

≥
∑

j∈D\{i}

φ(gj(α),Ωj(ω), Vj(x))

︸ ︷︷ ︸
:=κ2

+φ(gi(α),Ωi(ω), β′ivi(x) + γ′i).

Combining the above and substituting for γ′i gives

− (φ(gi(α),Ωi(ω), βivi(x) + γi)− φ(gi(α
′),Ωi(ω), β′ivi(x

′) + γi − (β′i − βi)vi(x)))

≥κ2 − κ3

≥− (φ(gi(α),Ωi(ω), βivi(x) + γi)− φ(gi(α
′),Ωi(ω), βivi(x

′) + γi)) .

Since φ is strictly increasing in Vi(x), the outer inequality implies

−(vi(x)− vi(x′))(β′i − βi) ≥ 0,

and thus, it must be that vi(x
′) ≥ vi(x).

If the environment is g-separable, then vi is increasing in gi(α), and the result

follows.

Proof of Proposition 2-g. Take any λ′, λ with λ′ > λ. Let (x, α) and (x′, α′) denote a
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solution given λ and λ′, respectively. Optimality of (x, α) and (x′, α′) implies∑
i

UM(ΩM
i (ω), Vi(x)) + λ

∑
i

UA(gi(α),ΩA
i (ω), Vi(x))

≥
∑
i

UM(ΩM
i (ω), Vi(x

′)) + λ
∑
i

UA(gi(α
′),ΩA

i (ω), Vi(x
′)), and∑

i

UM(ΩM
i (ω), Vi(x

′)) + λ′
∑
i

UA(gi(α
′),ΩA

i (ω), Vi(x
′))

≥
∑
i

UM(ΩM
i (ω), Vi(x)) + λ′

∑
i

UA(gi(α),ΩA
i (ω), Vi(x)).

Combining the above gives

− λ′
(∑

i

UA(gi(α),ΩA
i (ω), Vi(x))−

∑
i

UA(gi(α
′),ΩA

i (ω), Vi(x
′))

)
≥
∑
i

UM(ΩM
i (ω), Vi(x))− UM(ΩM

i (ω), Vi(x
′))

≥− λ

(∑
i

UA(gi(α),ΩA
i (ω), Vi(x))−

∑
i

UA(gi(α
′),ΩA

i (ω), Vi(x
′))

)
.

To reach a contradiction, suppose the expression in the middle is strictly negative.

Then, the expression on the right must also be strictly negative; but then it is strictly

larger than the left one as λ′ > λ—a contradiction. Thus, the first claim follows.

Now consider two sets of payoff levels, (γi)i∈D and (γ′i)i∈D, and scalar χ ∈ [0, 1].

Let

(α∗, x∗) ∈ arg max
α,x∈X(α)

∑
i

φ(gi(α),Ωi(ω), βivi(x) + χγi + (1− χ)γ′i).

Then∑
i

φ(gi(α
∗),Ωi(ω), βivi(x

∗) + χγi + (1− χ)γ′i)

≤χ
∑
i

φ(gi(α
∗),Ωi(ω), βivi(x

∗) + γi) + (1− χ)
∑
i

φ(gi(α
∗),Ωi(ω), βivi(x

∗) + γ′i)

≤χ max
α,x∈X(α)

∑
i

φ(gi(α),Ωi(ω), βivi(x) + γi) + (1− χ) max
α,x∈X(α)

∑
i

φ(gi(α),Ωi(ω), βivi(x) + γ′i),

where the first inequality follows from the convexity of φ in Vi(x) and the second

inequality from optimality, and so the second claim follows.
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Now suppose the environment is g-separable; consider dimension i ∈ D and sup-

pose UA(gi(α),ΩA
i (ω), Vi(x)) = gi(α)UM(ΩM

i (ω), Vi(x)), gi(α) = fi(αi), and the ob-

jective given λ is convex in αi.

As in the proof of the analogous part in Proposition 2, it suffices to show that if

UM(ΩM
i (ω), V̂i(αi)) is convex in αi, so is fi(αi)U

M(ΩM
i (ω), V̂i(αi)), where we substi-

tuted V̂i for Vi and fi for gi.

Next, denote fi(αi) by α̃i. Then, considering α̃i as the choice variable, we have to

show that if UM(ΩM
i (ω), V̂i(f

−1
i (α̃i))) is convex in α̃i, so is α̃iU

M(ΩM
i (ω), V̂i(f

−1
i (α̃i))),

where f−1
i denotes the inverse of fi and is well defined as fi is strictly increasing. But

this is exactly what the analogous part in Proposition 2 states, and so the third claim

follows.

Proof of Proposition 3-g. Both parts of the propositions are direct implications of

Topkis’s Theorem.
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